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Thesis Abstract 

Thesis Abstract 

Natural images contain large amounts of structural information characterised 

by higher-order spatial correlations. Neurons have limited capacities, so the 

visual system must filter out non-salient information, but retain that which is 

behaviourally relevant. Previous research has concentrated on two-point 

correlations; there has been less research into higher-order correlations, 

although the visual system is sensitive to them. Isotrigon textures can be 

used for this purpose. Their salient structure is exclusively due to fourth- and 

higher-order spatial correlations and they have the same structural features 

that create salience in natural images. 

In Chapter 2, we evaluated human texture discrimination using 10 novel 

isotrigon textures (VnL2) and 17 standard V3L2 isotrigon textures. Factor 

analysis revealed that as few as 3 mechanisms may govern the detection of 

fourth- and higher-order image structure. The Maddess group has previously 

published evidence that the number of independent mechanisms is less than 

10 and perhaps as small as 3-4. The computation of higher-order 

correlations by the brain is neuro-physiologically plausible via nonlinear 

combinations of recursive and/or rectifying processes.  

In Chapter 3, we utilised the crowdsourcing platform “mTurk” to implement a 

large texture discrimination study. Under laboratory conditions, we showed 

that the testing modality was robust across a range of browsers, resolutions, 

contrasts and screen sizes. Texture discrimination data was gathered from 

121 naïve subjects and compared to 2 independent laboratory data sets. 

Factor analysis indicated the presence of 3-4 factors, consistent with 

previous studies. Based on Pearson's correlation and coefficients of 
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repeatability, mTurk is capable of producing data of comparable quality to 

laboratory studies. This is significant as mTurk has not previously been 

systematically evaluated for visual psychometric research.  

In Chapter 4, we employed a set of statistically controlled ternary textures. 

The textures were constrained (spatial correlations from 1st to 4th order) and 

their salience could be independently controlled by the addition of noise. To 

the ideal observer, all textures defined by a given amount of noise are 

equally detectable. However, humans are not ideal observers; their visual 

perceptual resources are restricted. 

Because of the number of textures available, we used mTurk to gather 

performance functions from 928 subjects for a subset of the texture space. 

Perceptual salience varied for each image statistic, with rank order: gamma > 

beta_hv > beta_diag > alpha > theta. This supports the order previously 

published for the related binary stochastic textures. The two least salient 

directions were consistently white:black and grey-bias (for gammas and 

betas), and black:grey and grey:white (for thetas and alphas). Such 

differences reflect the sensitivities and limitations of neural processing and 

are a manifestation of efficient coding. 

We hypothesised that the grey token conferred non-salience. Indeed, for 

gammas and betas, the grey-bias was consistently the second least salient. 

However, this did not hold for thetas or alphas. Counter-intuitively, the order 

of texture presentation did not significantly affect discrimination performance. 

An analysis of 31 repeat Workers found evidence of learning for beta 

textures, whereas performance for other textures was already maximal. This 

thesis concludes by considering future research. 
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Chapter 1: General Introduction 

1.1 Prologue 

I will begin this General Introduction by discussing image and texture 

analysis methods and forms of Factor analysis; these concepts are critical to 

understanding the material which follows. I will then review cortical 

processing and receptive fields. I will move on to give an overview of texture 

perception, before considering how isotrigon textures can be used to probe 

the sensitivities and limitations of the human visual system. I will discuss 

which brain regions are involved in texture perception and then review the 

use of Amazon Mechanical Turk to conduct crowdsourced visual 

psychometric experiments. Lastly, I will outline the structure of this thesis. 

 

1.2 Texture Analysis and Factor Analysis Techniques 

1.2.1 Texture Analysis Algorithms 

At the heart of this thesis is the evaluation of texture perception and textures 

using texture analysis algorithms. Textures can be defined as complex visual 

patterns composed of regular, and possibly self-similar or repeating, 

elements on a surface. Digital images are composed of pixels; therefore 

digital textures can be defined as entities consisting of mutually related pixels 

and groups of pixels. These pixel groupings may be called texture 

"primitives" or texture elements ("Texels") (Srinivasan and Shobha, 2008). 

Here we broadly define texture analysis functions to be a class of 
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mathematical methods that characterize spatial variations within an image. 

They allow us to view textures as a primarily mathematical constructs and 

are therefore central to our understanding of texture perception. 

According to Materka (Materka and Strzelecki, 1998), four types of texture 

analysis approaches are commonly defined. Structural approaches (Haralick, 

1979) represent textures based on the hierarchical arrangement of 

primitives. Model based texture analysis (Strzelecki and Materka, 1997) 

attempts to define a texture by use of a stochastic model. Transform 

methods of texture analysis, such as Gabor (Bovik et al., 1990) and wavelet 

transforms (Lu et al., 1997), use image spaces where coordinates are related 

to the characteristics of the texture (such as frequency or size). Statistical 

approaches (Julesz, 1975) define textures based on the distributions and 

relationships between grey levels within an image. In this thesis, we will be 

primarily concerned with statistical approaches. They include conjoint space 

and spatial frequency methods, convolution filters, and spatial 

autocorrelation (Srinivasan and Shobha, 2008). 

 

1.2.2 Spatial Frequency 

What is a spatial frequency? Spatial frequency is a measure of how 

often sinusoidal components repeat per unit of distance. To illustrate this 

concept, consider one dimensional spatial frequency as defined by a simple 

sine wave. We can create a spatial sine wave by defining the grey value (G) 

as a function of the x-direction, as shown in Equation 1: 
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𝐺(𝑥) = 127 + 127𝑠𝑠𝑠(𝑥)  (Eq. 1) 

 

When this function is repeated vertically, it defines a series of vertical stripes 

(Figure 1). We can modify this function, and thereby produce a rectangular 

waveform, by adding odd harmonic waves from a Fourier series. 

A Fourier series decomposes any periodic function into the sum of a set of 

simple sines and cosines. This is illustrated in Equation 2: 

 

𝐺(𝑥) = sin(𝑥) + 1
3

sin(3𝑥) + 1
5

sin(5𝑥) + 1
7

sin(7𝑥) … (Eq. 2) 

 

As an increasing number of elements of the Fourier series are added, the 

approximation of the rectangular wave becomes better (Figure 1). This 

illustrates that any wave pattern can be created by the superposition of sine 

waves, a fundamental principle of the Fourier Transform (discussed below in 

Section 1.3). The concept of spatial frequency can be readily extended to 

two-dimensional images. In this case, both the location and the direction of 

the trace affect the spatial frequency content recorded (Heilbronner and 

Barrett, 2013). Sinusoidal gratings are frequently used during the study of 

visual perception to probe the capabilities of the visual system. In this case, 

spatial frequency is commonly expressed as cycles per degree of the visual 

angle subtended (Snowden et al., 2012). 
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Figure 1. An illustration of one dimensional spatial frequency using 

the superposition of different sine waves. Row 1 is derived from the 

fundamental frequency sin(x). Row 2 is derived from sin(x) plus the 

first 2 odd harmonics from the Fourier series (given in Eq. 2). i.e.: up 

to and including 1/5sin(5x). Row 3 shows sin(x) plus harmonics up to 

and including 1/15sin(15x). Row 4 shows sin(x) plus 450 odd 

harmonics, which approximates a square wave. 

 

This example also illustrates the wave property phase and the phenomenon 

of phase cancellation. If we consider the time domain, the phase of a wave is 

the fraction of a complete wave cycle which has occurred since some 
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specified time point (normally taken to be the origin, time t = 0). The 

relationship between amplitude, frequency and phase can be shown as 

follows in an equation for simple harmonic motion (Eq. 3): 

  

𝑥(𝑡) = 𝐴. sin (2𝜋𝜋𝑡 +  Θ(𝑡))      (Eq. 3) 

 

…where A is the signal amplitude, f is frequency, t is the time elapsed and θ 

is the phase (Reddy et al., 1994). 

When two out of phase waves are combined, phase cancellation may result 

in a reduction in the overall amplitude of the combined signal; the opposite 

effect is phase reinforcement, which occurs when waves are in phase. In the 

context of the Fourier series discussed above (and shown in Eq. 2), 

successive phase cancellation and phase reinforcement to local regions of 

the base waveform (sin(X)) leads to the production of an approximated 

square wave (Heilbronner and Barrett, 2013). 

 

1.2.3 Fourier Transforms 

The Fourier transform is an image processing tool which can be used to 

decompose an image into its constituent sine and cosine waveforms. In the 

case of a 2D image, whereas the input image is in the spatial domain, the 

output of the transformation represents the image in the Fourier or frequency 

domain. Each point in the Fourier domain image corresponds to a particular 

frequency in the spatial domain image. A one-dimensional Fourier transform 

is given by Equation 4: 
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𝐹(𝑢) =  ∫𝜋(𝑥) 𝑒−2𝜋𝜋𝜋𝜋𝑑𝑥  (Eq. 4) 

 

…where eiux is cos(ux) + i * sin(ux) and x is length and u is spatial frequency 

(Heilbronner and Barrett, 2013).  

The Fourier transform has real and imaginary components, the cos and sin 

parts of Eq. 2. These can be related to the magnitude and phase of the wave 

by Pythagoras’ rule. In image processing, the phase information is often 

discarded as the magnitude contains the geometric structural information of 

the spatial domain image (note that the phase information is required for 

inverse Fourier transforms). Fourier transforms are computationally 

intensive, especially for large images, so the Fast Fourier Transform (FFT) is 

commonly used instead.  

An image in the Fourier domain is decomposed into its sinusoidal 

components; therefore, it is easier to examine and analyse the geometric 

structure in the spatial domain. Two-dimensional Fourier transforms of some 

more complex and realistic images are shown in Figure 2. For example, the 

Fourier transform of the image of the fern shows a maximum at 

approximately 70 degrees and a frequency of 15 per image. This 

corresponds to the leaflets highlighted in the greyscale image above. Also 

note the vertical and horizontal lines through the centre, which correspond to 

the image boundaries (Heilbronner and Barrett, 2013). 
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Figure 2. Two-dimensional Fourier transforms of complex and 

realistic images. The top row shows greyscale images and the bottom 

row shows the corresponding Fourier transforms. (a) a superposition 

of four sine waves with a cut-out square. (b) a natural image of a fern. 

(c) ternary noise. Selected orientations and frequencies are 

highlighted. The darker tones correspond to higher contrasts of the 

constituent spatial frequencies. Note that the each of the images is a 

quarter of the size of the original for reasons of presentation 

(Heilbronner and Barrett, 2013).  

 

Fourier transforms can also be used to produce filter masks. High-pass 

filtering blocks low frequencies, which results in the sharpening of an image. 

Low pass filtering is the inverse and results in image blurring. Manipulations 
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to the Fourier domain are reflected in the spatial domain following inverse an 

Fourier transform, and vice versa (Heilbronner and Barrett, 2013). 

 

1.2.4 Autocorrelation Function 

A texture cannot be defined by single point measurements of brightness 

intensity nor colour. Rather, texture descriptors must be based on 

relationships between neighbouring features. One measure of these 

relationships is called spatial autocorrelation. Griffith defines spatial 

autocorrelation as "…the correlation among values of a single variable strictly 

attributable to their relatively close locational positions on a two-dimensional 

surface" (Griffith, 2003). The degree to which such relationships exit can be 

mathematically quantified using the autocorrelation function (ACF). The ACF 

measures the spatial frequency content of a texture and, in so doing, defines 

its regularity and coarseness (Srinivasan and Shobha, 2008). To put it 

another way, the ACF describes the correlation between image primitives as 

a function of displacement. Equivalently, in a greyscale image, the ACF 

describes the correlation between the grey values of every pixel with its 

neighbours as a function of relative location. Heilbronner presents a thought 

experiment which provides an intuition of the ACF, adapted as follows 

(Heilbronner and Barrett, 2013).  

The image in Figure 3 shows a white circle on a black background. This 

image is duplicated on two transparent films, so that the circles are fully 

transparent and the background is fully opaque. These transparencies are 

then held up to a light source. Maximum light transmission is achieved when 

the circles are precisely aligned. This starting position corresponds to zero 
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displacement (x' = 0, y' = 0). Now, keeping one film fixed in place, the second 

film can be displaced in any direction. As the films overlap, the amount of 

light transmitted decreases. The total light transmitted for a given 

displacement can be regarded as a measure of the value of the ACF at that 

position (x', y'). The brightness analogue of the ACF is the total light 

transmitted for all possible displacements (Figure 3) (Heilbronner and 

Barrett, 2013). 

 

Figure 3. A visualization of the ACF. (a) Two copies of the circle on 

transparent films are superimposed. One copy is then displaced in the 

x and y-planes by Δx and Δy. A is the area of overlap of the circles. 

(b) the correlation between the two image copies is measured as A(x', 

y'), the area of overlap as a function of the x and y displacement; here, 

only A(x') is shown (Heilbronner and Barrett, 2013). 
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Based on the autocorrelation function, single-point correlations, or first-order 

statistics, inform the visual system about the mean brightness of an image. 

Two-point correlations, or second-order statistics, inform the visual system 

about the spatial frequency content of an image. Higher-order correlations 

capture salient features such as object contours. Expressed mathematically, 

an example of the autocorrelation function for second-order statistics (two 

point correlational structure) is shown as follows (Equation 5) (Taylor, 2008). 

The discrete zero mean second-order spatial correlation function for an 

image (I(x,y)) of size N pixels is: 

 

C2,f(h,v) = 1/N  Σ Σ I(x, y) I(x+h, y+v) ΔxΔy    (Eq. 5) 

 

This function results from the pointwise multiplication of each pixel in x and y, 

belonging to the set of all I(x,y), by all possible fixed displacements (ΔxΔy), in 

the horizontal (h) and vertical (v) planes (Taylor, 2008). As we would expect, 

if texture primitives are large, the ACF decreases slowly with increasing 

displacement, and vice versa. If the primitives are positioned periodically, the 

ACF will increase and decrease periodically with displacement (Srinivasan 

and Shobha, 2008).  

The ACF as defined thus far registers correlations between pairs of pixels. 

Figure 3 and Eq. 5 define pairs of planes sliding past each other, with all 

pairs of overlapping pixels being multiplied and cumulative sums taken. 

However, we can also evaluate correlations between larger cohorts of pixels, 

such as triplets or quadruplets, to thereby generate third- and fourth-order 

correlation functions. In reference to the number of pixels per cohort being 
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considered, second-order statistics are sometimes referred to as dipole 

statistics and higher orders as involving “N-gons” (for example, where N = 3, 

“trigons”). Natural images are rich in these higher-order spatial correlations; 

the spatial correlation content of natural images at different orders is shown 

in Figure 4. 

 

Figure 4. The content of natural images in terms of spatial 

correlations. The content is expressed in terms of mean square 

reconstruction error (MSE), where only correlations up to a particular 

order are considered. The data is obtained from 10 natural images.  

Note the high proportion of third- and higher-order spatial correlations 

(Franz and Schölkopf, 2005). 



Chapter 1: General Introduction 

24 
 

Correlations between triplets of pixels (trigons) can be computed by 

considering the displacement of three shifting planes: h1 and h2, v1, and v2. 

Therefore, the three correlation function is 4 dimensional (Eq. 6).  

𝑆3,𝜋(ℎ1,𝑣1,ℎ2,𝑣2) =  1
𝑁∬𝜋(𝑥,𝑦)𝜋(𝑥 + ℎ1,𝑦 + 𝑣1) 𝜋(𝑥 + ℎ2,𝑦 +

𝑣2)𝑑𝑥𝑑𝑦           (Eq. 6) 

 

Another important concept for texture analysis is the power spectrum. 

The power spectrum of a signal is the power of that signal at each of its 

constituent frequencies; that is, the square of the Fourier transform. White 

noise, for example, has a flat power spectrum as all frequencies are equally 

represented at the same power. The power spectrum, Fourier transform, and 

autocorrelation function are closely related. The Fourier transform of an 

autocorrelation function is the power spectrum, or equivalently, the 

autocorrelation is the inverse Fourier transform of the power spectrum 

(Bracewell, 1965). Note that the square root of the power spectrum is the 

amplitude (magnitude) spectrum. 

 

1.2.5 Gabor Transform 

The Gabor transform is a special type of Fourier transform which can be 

used to determine the sinusoidal frequency and phase content of discrete 

signal sections as they change over patches of time or space (Sandler and 

Lindenbaum, 2006). The Gabor transform was originally derived from 

Gabor's theory of communication, which showed that signals can be 

represented in terms of functions that are localized in both time and 

frequency (Gabor, 1946). Image filters based on Gabor transforms are 
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particularly pertinent as they have been found to resemble those of the 

human visual system (Marčelja, 1980, Daugman, 1985).  

Whereas the Fourier transform supplies all the average frequency content 

across the whole image, the Gabor transform does a piecewise analysis of 

the frequency content within patches of a signal. The key element of the 

Gabor transforms are so called Gabor functions, which are Gaussian 

envelopes of different sizes multiplied by a sinusoidal carrier frequency. Note 

that to encode phase, the carriers must be of two types; typically cosine and 

sine pairs are used.  

For a 2D signal, the Gaussians are 2D and the 1D carriers need to have two 

orientations to span orientation space. The bank of functions is convolved, 

with the image centred on a number of sample locations. Importantly, as 

Gabor pointed out, the number of coefficients (i.e. Gabor functions) and 

sample locations should be equal to the number of samples in the original 

signal. For a digital image, the number of Gabor functions required is equal 

to the number of pixels. This makes the Gabor transform lossless. Thus, the 

gap between the Gabor function sampling positons are wider apart than the 

original time or space domain samples, growing larger as the number of 

Gabor functions per position increases.  

The number of Gabor functions per position, and the number of different 

carriers, defines the number of frequency bands analysed at each position. 

Having more Gabor functions than the minimum number required is often 

described as over-complete or redundant. Several modern variants of the 
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Gabor transform that use different envelope functions fall under the heading 

of wavelet transforms. 

Gabor space has been widely used in applications such as iris (Ma et al., 

2002) and fingerprint recognition (Jain et al., 2001). An example of a two-

dimensional Gabor filter g(x,y) is defined in Equation 7 (Yin et al., 2009): 

 

g(x,y) = 1/(2πσxσy) * exp[−1/2(x2/σ2x + y2/σ2y)] * exp(j2πWx)  

(Eq. 7) 

 

…where W is the frequency of the sinusoidal plane wave; the Gaussian 

envelope in the x and y planes is specified by σx and σy (and this acts as the 

window function, thus determining the bandwidth of the Gabor filter) (Yin et 

al., 2009). Figure 5 shows an example of a Gabor filter in two dimensions. 

 

1.2.6 Factor Analysis, Principal and Independent Component Analysis 

Principal Components Analysis (PCA) was developed in 1901 by Karl 

Pearson (Pearson, 1901) and later independently by Hotelling (Hotelling, 

1933). PCA is a variable reduction technique that allows a complex data set 

to be reduced to one of lower dimensionality (Fabrigar et al., 1999, Suhr, 

2005, Meglen, 1992, Jeong et al., 2009).  

In the first stage of PCA, a covariance matrix is produced from the original 

data set. The covariance of two variables is their tendency to vary together. 

From this covariance matrix, eigenvectors and eigenvalues are determined. 
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Singular value decomposition (SVD) is commonly used for this purpose, 

particularly for non-square matrices (Jeong et al., 2009). 

 

Figure 5. Example of a two-dimensional Gabor filter. The units are 

relative. 

 

Eigenvectors are vectors which do not change direction during a 

transformation. The magnitude of an eigenvector may change during a 

transformation; this is known as the eigenvalue. In simple terms, for a square 

matrix A, a scalar λ, and a vector v, if Equation 8 is satisfied: 
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𝐴𝑣 =  𝜆𝑣   (Eq. 8) 

…then λ is an eigenvalue of v, where v is the eigenvector (Press, 2007). The 

set of all values of λ and v for the matrix A defines an eigenspace. The 

number of eigenvectors, and the dimensionality of the eigenspace, is equal 

to the size of the original covariance/cross correlation matrix. The size of the 

Wigner values is proportional to the proportion of the covariance accounted 

for by each orthogonal component (eigenvector).  In PCA, the original data 

set is projected onto a new coordinate system, defined by the eigenvectors 

and eigenvalues. A second step, Factor analysis, is to reconstruct the data 

with a subset of the eigenvector/value pairs that gives a good account of the 

data with the aim of reducing its dimensionality (Jeong et al., 2009).  

When sorted in order of magnitude, the eigenvalues indicate the relative 

significance of the eigenvectors, i.e. the significant dimensions. A scree plot 

is commonly used to sort and display the eigenvalues. Scree plots are 

accurate and reliable, although prone to some variations between assessors 

(Cattell, 1966, Hayton et al., 2004, DeVellis, 2012, Zwick and Velicer, 1986). 

The eigenvector with the highest eigenvalue contributes the most to the 

observed variation in the data set. The adequacy of a PCA factor model can 

be evaluated by calculating its reconstruction error versus the original data 

set. i.e.: evaluating what proportion of the data set is accounted for by the k-

factor model derived (Reyment and Joreskog, 1996). We will use this 

technique in Chapters 2 to 4 and it is discussed in detail in Chapter 2 

(Section 2.4.2).  
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An alternative data reduction method is independent component analysis 

(ICA). ICA is a method for separating a signal into a linear mixtures of 

independent additive components (Hyvärinen and Oja, 2000). ICA consists 

of searching for a linear transformation that minimizes the statistical 

dependence between constituent components. Whereas PCA is normally 

used where the data being analysed has an assumed Gaussian distribution, 

ICA can recover basis functions from more complex signals.  

There are many situations in which data is not Gaussian and the most 

famous example in the context of ICA is the "cocktail party effect", described 

as follows (Bronkhorst, 2000). Two microphones record two people speaking 

simultaneously, from different locations within a room. Each microphone will 

therefore record a particular linear combination of the two voices. Whereas 

PCA could reduce the voice data into a smaller set of orthogonal variables, it 

would not separate the voices into coherent streams. In contrast, ICA would 

be able to separate the voice of each speaker from the mixed recording 

(Langlois et al., 2010, Comon, 1994, Stone, 2004).  

ICA can be formally defined as follows. Let us denote the random observed 

vector:  

 

𝑋 = [𝑋1,𝑋2, … ,𝑋𝑚]𝑇    (Eq. 9) 

 

…whose m elements are mixtures of m independent elements from a 

random vector: 
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𝑆 = [𝑆1, 𝑆2, … , 𝑆𝑚]𝑇    (Eq. 10) 

 

…given by: 

𝑋 = 𝐴𝑆      (Eq. 11) 

 

…where A represents a mixing matrix, the sample value of Xj is denoted by 

xj and j = 1, 2, ..., m. The goal of ICA is to find the un-mixing matrix W (i.e. 

the inverse matrix of A); this can be used to derive Y, the best possible 

approximation of S (Langlois et al., 2010, Comon, 1994) (Stone, 2004). i.e.:  

 

𝑌 = 𝑊𝑋 =�  𝑆     (Eq. 12) 

ICA has a wide variety of applications, including data compression, 

deconvolution and separation. In the context of vision research, several 

authors have derived functions resembling simple cell receptive fields from 

ICA of natural images (Bell and Sejnowski, 1997, Hurri, 1997, Hurri et al., 

1996, van Hateren and van der Schaaf, 1998, Wachtler et al., 2001). Some 

examples of this specific application will be discussed in Section 1.4.2 below. 

The contrast between ICA and PCA is illustrated in Figure 6 (Zetzsche et al., 

1999).  
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Figure 6. Illustration of the transformation of a probability density 

function (PDF) using three different methods. A: In PCA, the PDF is 

projected onto a new coordinate system with rotated Cartesian 

coordinates where the principal components are uncorrelated; for 

Gaussian statistics, the components are independent. B: In linear ICA, 

the PDF is transformed into a feature space with sheared Cartesian 

coordinates. This results in the separation of a linear mixture of 

independent sources. C: Separation of nonlinear mixtures via 

nonlinear ICA (Zetzsche et al., 1999). 

While models like ICA or nonlinear ICA can handle more complex data types, 

they are more complicated and so require cross-validation. In a 

psychophysical setting, where the data are often hard won in terms of time, 

A 

B 

C 
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we have chosen in this thesis to confine ourselves to more parsimonious 

PCA based Factor analysis. 

 

1.3 Central Visual Pathways 

1.3.1 Central Projections of Retinal Ganglion Cells 

Information supplied by the retina interacts with multiple brain regions and 

results in visual perception. Ganglion cell axons exit the retina through the 

optic disk, where they aggregate and form the optic nerve. Optic nerve axons 

advance directly to the optic chiasm at the base of the diencephalon and 

then form the optic tract (Figure 7). Decussation at the optic chiasm means 

that visual information from each retina is processed by corresponding 

cortical sites in each hemisphere (Purves et al., 2001). 

Ganglion cell axons in the optic tract target structures in the midbrain and 

diencephalon (Figure 7). In the diencephalon, the primary target is the dorsal 

lateral geniculate nucleus (LGN) of the thalamus. LGN neurons send their 

axons to the cerebral cortex via the internal capsule. These axons pass 

through the optic radiations and terminate in the primary visual cortex (V1), 

also referred to as the visual striate cortex or Brodmann's area 17. In 

humans, V1 resides along and within the calcarine fissure of the occipital 

lobe (Purves et al., 2001).  
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Figure 7. Central projections of retinal ganglion cells. Ganglion cell 

axons terminate in the LGN, superior colliculus, pretectum, and 

hypothalamus. Only crossing axons, arising from the right eye, are 

shown (Purves et al., 2001). 

Cortical processing of visual information begins in area V1, which is located 

in both hemispheres. V1 has a retinotopic organization; this means that it 

contains a complete map of the visual field. V1 in the left hemisphere 

receives input from the left LGN; this information derives from the right visual 

field, which is acquired by the left portion of the two retinas. Conversely, V1 

in the right hemisphere processes information from the left visual field. The 

two hemispheres are connected via the corpus callosum (Purves et al., 

2001). The retinotopic mapping is continuous and surprisingly free from 

deleterious distortions (Adams and Horton, 2003). The region of V1 
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representing the fovea is larger than those regions that represent more 

peripheral areas (Tootell et al., 1988, Azzopardi and Cowey, 1996) and 

mapping in V1 can be considered approximately log-polar (Tootell et al., 

1988, Schwartz, 1980, Adams and Horton, 2003).  

V1 processes visual inputs from the LGN and relays the results forward to 

subcortical structures and higher visual areas. In primates, these include V2, 

V3, MT, MST, and FEF (Maunsell and Newsome, 1987, Van Essen et al., 

1992). Reciprocal feedback connections also exist, from extrastriate areas to 

V1, and in turn from V1 to the LGN (Alitto and Usrey, 2003, Briggs and 

Usrey, 2008). V1 receives input from other brain regions including the 

nucleus basalis, which may modulate alertness (Harris and Thiele, 2011). 

Structurally, like most neocortical areas, V1 is divided into six functionally 

distinct layers (Shepherd, 1998, Hubel, 1988). Layer 4 receives most visual 

input from the LGN and is further divided into 4 layers (4A, 4B, 4Cα, and 

4Cβ). In primates, the primary LGN inputs arrive in 4Cα and segregate 

depending on the source: magnocellular inputs to 4Cα, parvocellular inputs 

to 4Cß, and koniocellular inputs to layers 1, 3, and 4A (Casagrande and Xu, 

2004). The name "striate cortex" derives from a visible band, called the line 

of Gennari, which represents myelinated axons from the lateral geniculate 

body terminating in Layer 4. 

  

1.3.2 Functional Organisation of Extrastriate Visual Areas 

Anatomical and electrophysiological studies in macaques have elucidated 

the anatomy and functional significance of the extrastriate areas involved in 
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visual processing (see (Orban, 2008) for a review). Functional imaging 

studies of the human extrastriate cortex point to a similar structural 

arrangement (Sereno et al., 1995) (Figure 8). Each of these higher areas is 

primarily dependent on V1 for its activation and feed-forward input. The 

response properties of the neurons in extrastriate areas suggest that they 

are specialized for different types of visual information, although they are far 

from fully understood. 

The extrastriate areas are believed to be organized into two distinct visual 

streams. The first evidence for this came from lesion studies in macaques. 

Lesions within the inferior temporal area were found to cause deficits in 

visual discrimination, but not visuospatial tasks; conversely, parietal lesions 

were found to adversely affect visuospatial performance, whilst visual 

discrimination was spared (Mishkin et al., 1983). On this basis, Mishkin et al. 

proposed the existence of two processing streams. The ventral stream is 

involved in object recognition; it includes V4 and leads from the striate cortex 

into the inferior part of the temporal lobe. The dorsal stream is involved in 

spatial aspects of vision, such as the analysis of motion; it leads from the 

striate cortex to the parietal lobe (Mishkin et al., 1983). Goodale and Milner 

subsequently proposed a modification which emphasized perception versus 

action for the ventral and dorsal processing streams respectively (Goodale 

and Milner, 1992). 
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Figure 8. Striate and extrastriate areas in the human brain based on 

fMRI studies. (A/B) lateral and medial views (respectively) of the 

human brain derived from fMRI data. The location of V1 is indicated, 

along with the higher visual areas V2, V3, VP (ventral posterior area), 

V4, MT (middle temporal area), and MST (medial superior temporal 

area). (C) flattened view of retinotopically defined visual areas in the 

occipital lobe. Dark grey indicates cortical regions buried in sulci. The 

human visual areas closely resemble those of the macaque (Purves et 

al., 2001) (adapted from (Sereno et al., 1995)). 
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1.3.3 Spatiotemporal Tuning Properties of Visual Neurons 

1.3.3.1 Surround Cells of the Retina 

The response profiles of visual neurons have been explored using single cell 

recording (Boulton et al., 1990) and point or bar stimuli. If a microelectrode is 

placed near to the target cell, we can directly observe its response to a 

stimulus, based on changes in its firing rate. By varying the nature and the 

location of the stimulus, the response behaviour of the target cell can be 

mapped.  

Among the earliest proponents of single cell recording were Hartline et al. 

They identified a region of frog retina where spots of light altered the firing 

rate of retinal ganglion cells. They called this region a receptive field 

(Hartline, 1938). In the 1950s, Kuffler et al. became the first to record visual 

responses from mammalian retinal ganglion cells (Kuffler, 1953). They found 

that Hartline’s receptive field had a specific spatial structure termed a centre-

surround. On-centre cells were found to have receptive fields composed of a 

central excitatory region, with a concentric inhibitory region. These two 

regions interact in an antagonistic way. Off-centre cells were also found, 

exhibiting the opposite architecture and response behaviour (Kuffler, 1953). 

The receptive fields of most lateral geniculate nucleus (LGN) cells were 

subsequently found to have a very similar centre-surround architecture to 

those of retinal ganglion cells (Hubel and Wiesel, 1961) (Figure 9). 
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Figure 9. (A) Representations of On- and Off-centre receptive fields in 

the retina. The upper images show the maps of areas of excitation 

(white) and inhibition (blue) for an On-centre (left) and Off-centre cell 

(right). The graph below shows the response of each cell to a spot of 

light, presented at various positions across the centre of each cell. (B) 

The concentric receptive field of a LGN cell will respond in the same 

way to bar stimuli of all orientations (Snowden et al., 2012). 

 

1.3.3.2 Cortical cells 

The receptive fields of simple cells have been studied extensively (Hubel and 

Wiesel, 1968, De Valois et al., 1982). They are oriented and have band-pass 

characteristics in the spatial and temporal frequency domains. Simple cells 

have receptive fields with a characteristic spatial structure. Like the neurons 

of the retina and LGN, they can be divided into distinct excitatory and 

inhibitory regions. However, their On- and Off- subregions are elongated and 

A B 
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parallel, rather than circular and concentric (Hubel and Wiesel, 1962). There 

is spatial summation between these subregions; therefore, when the 

receptive field of a simple cell has been mapped, its response to visual 

stimuli can be predicted as the linear sum of regional responses (Movshon et 

al., 1978b).  

Based on the architecture of simple cell receptive fields, it is unsurprising that 

small spots of light illicit only weak responses; instead, these cells respond 

more strongly to bar stimuli (Hubel and Wiesel, 1962, Hubel and Wiesel, 

1968, De Valois et al., 1982). The magnitude of the response is dependent 

on the orientation of the bar. The cell is most highly stimulated by bars 

whose aspect ratio and orientation match the elongated subregions. The cell 

will respond less strongly as the orientation of the bar stimuli diverges from 

the optimal orientation. This phenomenon is known as orientation tuning.  

V1 neurons are also typically selective for the spatial frequency of a stimulus. 

As with orientation, this selectivity arises naturally from the shape of the 

receptive field. Neurons in V1 tend to be much more selective for spatial 

frequency than LGN neurons (DeValois and both Professors, 1988) (Figures 

10 and 11). Indeed it is clear that simple cell receptive fields resemble Gabor 

functions, as first pointed out by Marcelja, and as such these cells 

collectively appear to compute a Gabor-like transform of visual space, i.e. 

one localised in space and spatial frequency.  
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Figure 10. (A) The elongated receptive field of a cell in the primary 

visual cortex shows a strong preference for bar stimuli of a given 

orientation. In this example, the cell responds optimally to a vertical 

bar stimulus. (B) Orientation-selective cells with different spatial 

preferences, i.e. the width of their spatial frequency tuning relative to 

their centre frequency. Cell (a) responds optimally to a vertical bar 

stimulus. If we rotate the bar stimulus and plot the cell’s response, we 

produce a bell curve, with no response recorded for a bar at 60 

A 

B 
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degrees orientation from vertical. Cell (b) also responds optimally to a 

vertical bar stimulus. Again, rotating the bar stimulus and plotting its 

response, we produce a bell curve. However, this time no response is 

recorded for a bar at 30 degrees orientation from vertical. Cell (b) is 

more narrowly tuned for orientation than cell (a).  

 

Figure 11. Response of a V1 neuron to bar stimuli of different 

orientations. (a) The receptive field of the cell is represented by the 

green rectangle and the bar stimulus by the blue bars. The bar was 

moved through the receptive field and back again, indicated by 
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arrows. (b) The firing rate of the cell was rarely elevated in response 

to the bar stimulus, unless it was close to the preferred orientation. 

Also note that this cell was selective for the direction of motion 

(Snowden et al., 2012). 

 

However, it should be noted that some modern studies using different stimuli 

have called into question the canonical receptive field architecture of visual 

cortical neurons (Victor and Knight, 2003). There is some evidence that 

individual neurons are not restricted to a single orientation (Purpura et al., 

1994b). Furthermore, some aspects of early visual processing appear to 

utilise two-dimensional information, including texture (Victor and Brodie, 

1978) and T-junctions (Rubin, 2001). Victor et al. have proposed that 

receptive fields may instead be viewed as two-dimensional profiles, which 

are simultaneously space and bandwidth limited; such representations are 

based on Hermite functions (Victor and Knight, 2003). 

Some cells of the primary visual cortex also exhibit directional selectivity. In 

the cat visual cortex, Hubel and Wiesel (Hubel and Wiesel, 1959) showed 

that many neurons responded more strongly to a bar stimulus moved in a 

particular direction. During the same period, Reichardt et al. (Reichardt and 

Rosenblith, 1961) began studying optomotor responses in the fly. Fly 

optomotor responses are used for course stabilization; when a fly is 

presented with a rotating wide-field stimulus that mimics its surrounding 

visual space, it reacts by turning in the direction of stimulus motion 

(Heisenberg and Wolf, 1984). Reichardt et al. proposed a motion-opponent 

directionally selective model (Reichardt and Rosenblith, 1961) which has 
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become the canonical approach to motion modelling. The basic Reichardt 

model consists of pairs of motion-detecting subunits. When each subunit 

receives an input, a signal is sent to the other subunit. Concurrently, a time 

delay is introduced to the signal within the subunit. Thus, within each subunit, 

two inputs are multiplied, one received directly from the receptor with a time 

delay and the other received from the adjacent subunit. The multiplied values 

from the two subunits are subtracted and the sign of the output determines 

the preferred direction (Reichardt and Rosenblith, 1961). In this way, motion 

is computed via cross correlation. Van Santen and Sperling subsequently 

modified this model for human motion perception (Van Santen and Sperling, 

1985). The modified Reichardt model features spatial frequency-tuned 

receptive fields (such as Gabor functions). In this model, the subunits are 

formed from pairs of filters that differ in phase by 90 degrees (Van Santen 

and Sperling, 1985).  

Another model, closely related to the Reichardt model, has been proposed 

by Adelson and Bergen (Adelson and Bergen, 1985). In this model, the linear 

filtering stage is followed by a nonlinear filter which generates a phase-

independent signal (or Motion Energy). Emerson et al. repeated the bar tests 

of directionally selective cells in the cat's striate cortex (Emerson et al., 

1992), as originally studied by Hubel et al. (Hubel and Wiesel, 1962); their 

responses were then compared to predicted responses based on Reichardt 

and Motion Energy. They identified clear distinctions between the two 

models and found that the physiological responses aligned most closely with 

the Motion Energy model (Emerson et al., 1992). 
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Although V1 neurons appear to have some selectivity for stimulus speed, 

more typically they are thought to be selective for temporal frequency 

(Movshon et al., 1978b). Temporal frequency is defined as the inverse of the 

period between temporal dark and light oscillations. Mante and Carandini 

point out that the selectivity of simple cells can be thought of in integrated 

terms by considering a three-dimensional frequency space (Mante and 

Carandini, 2005). In frequency space, the Fx and Fy axes define spatial 

frequency and the Fz axis, temporal frequency. In this space, the distinct 

preferences of a given receptive field can be represented by an ellipsoid; its 

z-displacement indicates preferred temporal frequency, xy displacement 

indicates preferred spatial frequency, and angle to the ground plane 

indicates its preferred direction of motion and orientation (Mante and 

Carandini, 2005). If all V1 neurons are sampled and analysed in this manner, 

they would presumably tile the frequency space (or at least the region of 

frequency space to which humans are perceptually sensitive). 

 

1.3.3.3 Complex Cells 

Whilst simple cells share relatively similar receptive field architectures, those 

of complex cells are more diverse. Complex cell receptive fields do not 

usually have distinct subregions (any regions responding to on or off in a 

rectified fashion). In response to stimuli, complex cells exhibit non-linearities 

of spatial summation. Therefore, the optimal stimulus for a complex cell 

cannot be predicted based on receptive field architecture alone (Hubel and 

Wiesel, 1962, Movshon et al., 1978a). 
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Moving sinusoidal gratings may be used to classify simple and complex cells: 

simple cells respond to such stimuli with oscillatory responses, but the 

responses of complex cells are less modulated (De Valois et al., 1982, 

Movshon et al., 1978a). Fourier analysis can be used to extract the mean 

response (F0) and amplitude of response at the fundamental frequency (F1) 

(Movshon et al., 1978a). Based on this criterion, simple cells can be defined 

to have F1/F0 ratios greater than 1, whilst complex cells have F1/F0 ratios 

less than 1 (Movshon et al., 1978a, Ibbotson et al., 2005). However, other 

investigators have pointed out that the bimodality of F1/F0 ratios does not 

necessarily indicate the existence of two discrete populations of cells 

(Mechler and Ringach, 2002, Abbott and Chance, 2002). In one part of their 

detailed analysis, Mechler and Ringach (Mechler and Ringach, 2002) 

showed that a simple cell receptive field can also produce complex-like 

responses.  

The discovery of cells in the visual processing pathway with increasingly 

complex properties led Hubel and Wiesel to propose the hierarchical model 

(Hubel and Wiesel, 1962). According to this model, simple cell receptive 

fields are constructed from the convergence of LGN inputs, aligned in visual 

space. In turn, the output of spatially offset simple cells provides the input to 

a complex cell. 

This model received support from a study by Van Kleef et al. (Van Kleef et 

al., 2010). They used high and low contrast sinusoidal gratings, covering a 

range of spatial and temporal frequencies, to analyse complex cell receptive 

fields. The authors found that the responses of complex cells to low contrast 

stimuli resembled those of simple cells. The model that best reproduced their 
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findings was a variation of the hierarchical model wherein spatially offset 

simple cells (each with different contrast response functions) provided input 

to a complex cell. At low contrasts, only a single simple cells was sufficiently 

stimulated to respond; however, as contrast was increased, additional 

spatially offset simple cells with higher contrast thresholds responded, and 

the resultant combinatorial response was "complex" (Van Kleef et al., 2010). 

Despite being appealingly simple, several other studies have challenged the 

hierarchical model. Dreher et al. found that some simple and complex cells 

exhibit end-stopping, undermining the concept of a three-step (simple-

complex-hypercomplex) hierarchy (Dreher, 1972) (see Section 2.3.4). Some 

complex cells were also identified which received direct geniculate input 

(Martin and Whitteridge, 1984). An alternative model attributes complex cell 

activity to lateral recurrent connections between cortical neurons. i.e.: the 

response properties of complex cells might result from mutual excitation 

(Chance et al., 1999, Tao et al., 2004). A number of techniques have been 

employed to determine the nature of complex cell inputs (Movshon et al., 

1978a, Martinez and Alonso, 2001, Anzai et al., 1999). However, there is 

limited evidence for the presence of excitatory connections from simple to 

complex cells (Toyama et al., 1981a, Toyama et al., 1981b).  

The functional significance of complex cells is unclear. One theory proposes 

that complex cells provide feedback to earlier stages in the visual hierarchy. 

In so doing, they may mediate a gain control process, allowing visual 

neurons to adapt to variations in local contrast (Hubel, 1988). Another model 

proposes that complex cells represent a step up from a linear Gabor 

transform to a nonlinear, sparse representation based on the Wigner 
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distribution; this representation provides invariance to tilt, rotation and 

position in the visual field (Jacobson and Wechsler, 1984). The Wigner 

distribution function was first proposed by Eugene Wigner in 1932 (Wigner, 

1932). It has been found to be useful in the field of signal analysis where is 

can be used to define a time-dependent frequency spectrum (Claasen and 

Mecklenbrauker, 1980).  

Alternatively, it has been suggested that different brain areas and their 

diverse cell types represent a single linear/nonlinear hierarchical 

representation of visual space based on the related idea of the Wigner 

transform (Victor and Knight, 2003).   

1.3.3.4 Hypercomplex Cells 

Hubel and Wiesel also described neurons in the primary visual cortex which 

were not only orientation-tuned, but length-tuned (Hubel and Wiesel, 1965, 

Hubel and Wiesel, 1968). These are known as hypercomplex, end-stopped, 

or end-inhibited cells. A hypercomplex cell produces an excitatory response 

when a bar stimulus of a given length and orientation moves across its 

receptive field. Lengthening the bar stimulus improves the excitatory 

response (Hubel and Wiesel, 1965, Hubel and Wiesel, 1968). However, if the 

length of the bar exceeds a predefined limit, there is a marked decrease in 

the response (Figure 12). Curiously, this occurs in a part of visual space 

beyond where a response can be evoked from the cell.  
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Figure 12. Hypercomplex (or end-stopped) cells prefer bar stimuli of a 

certain length, in addition to having an orientation preference. Studies 

have found that end-stopping is also present in many simple and 

complex cells (Dreher, 1972), which suggests that these cells are a 

subset of simple and complex types (Murphy and Sillito, 1987, 

Snowden et al., 2012). 

A visual stimulus which falls outside of the receptive field of a visual cortical 

neuron does not trigger spiking; however, it may still modulate the response 

of the neuron (Adesnik et al., 2012, Gilbert et al., 1996). For example, it may 

attenuate the neuron’s response to subsequent visual stimuli which fall within 

the receptive field. This phenomenon is called surround suppression (Hubel 

and Wiesel, 1965, Levitt and Lund, 1997a). Surround suppression has been 
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suggested to contribute to perceptual effects such as curvature detection 

(Dobbins et al., 1987) and orientation discrimination (Mareschal and 

Shapley, 2004). It is not only observed in the cortex, but also in the retina 

(Solomon et al., 2006) and thalamus (Alitto and Usrey, 2008), although the 

latter are not orientation tuned.  

It is not known whether all of the surround suppression observed in the 

cortex has been relayed from earlier stages of visual processing. Some 

experimental findings and theoretical models suggest that cortical circuits 

contribute to surround suppression (Bolz and Gilbert, 1986, Ozeki et al., 

2009, Haider et al., 2010). A cortical circuit has been described that directly 

contributes to surround suppression in the superficial layers of V1 (Adesnik 

et al., 2012). 

End-stopping has subsequently been observed in both simple and complex 

cells (Dreher, 1972). Thus, hypercomplex cells are now considered to be a 

subset of simple and complex cells (Murphy and Sillito, 1987). The functional 

significance of end-stopping is unclear. Significantly for this thesis, 

hypercomplex cells may be important in removing redundant information 

(see Section 1.4 below) in natural images at higher-order correlations 

(Zetzsche and Rohrbein, 2001).  

 

1.3.4 Explanatory Models of Visual Cortical Neurons 

Although we know much about how early visual information processed, the 

reasons why the visual system operates in this manner are more opaque. 

The characterisation of simple cell receptive fields and their spatial frequency 
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tuning led to the hypothesis that the visual cortex acts as a spatial frequency 

analyser (Maffei and Fiorentini, 1973). This would mean that the visual cortex 

performs a two-dimensional Fourier transformation of the visual scene. 

However, the broad spatial-frequency bandwidths, and localized distribution 

of cortical cells, make them unsuitable for extracting Fourier coefficients 

(Field, 1987) and this hypothesis is no longer favoured. Therefore, how does 

the visual system implement frequency selective mechanisms? 

Several studies have proposed that the behaviour of cortical simple cells can 

be modelled in terms of Gabor functions (see Section1.4) (Watson, 1983, 

Palmer et al., 1985, Marčelja, 1980, Daugman, 1985, Jones and Palmer, 

1987). For example, Jones and Palmer showed that the real component of a 

Gabor function matches the receptive field functions of feline simple cells 

(Jones and Palmer, 1987). According to Marcelja et al. (Marčelja, 1980) 

Gabor functions provide the best local description of the most valuable image 

elements (in informational terms). A typical image contains lines and edges, 

with interspersed regions of uniform texture. Intuitively, the most important 

image information pertains to the locations and orientations of key lines and 

edges. Whereas a frequency analysis of a localized edge stimulus would 

elicit responses from many cells, a Gabor representation would trigger 

responses from only a few cells. The Gabor response is thus suited to the 

extraction of significant image features (Marčelja, 1980). 

There is some experimental evidence to support a Gabor representation. For 

example, De Valois et al. measured spatial frequency responses from 

macaque simple cells (De Valois et al., 1978). As described by Marcelja et 

al. (Marčelja, 1980) there is a strong resemblance between the cell 
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responses recorded by De Valois et al. and Gabor elementary signals 

(Figure 13).  

 

Figure 13. Comparison of the response of a macaque simple cell (De 

Valois et al., 1978) and a Gabor elementary signal. The figure on the 

left shows a least-squares-fit of the contrast sensitivity data as a 

function of spatial frequency. The figure on the right shows a Fourier 

transform of the elementary signal that fits the contrast sensitivity 

data, along with the measurements to a response to a narrow bar 

stimulus (Marčelja, 1980). 

 

A Gabor representation captures a second significant aspect of cortical cell 

receptive fields - that they are part of a scale invariant self-similar hierarchy. 

I.e. at each cortical location, several receptive fields occur that are scaled 

versions of each other. By consequence, these receptive fields can process 

visual information across a variety of spatial scales. Evidence of this scale 
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invariant arrangement has been found in macaque cortex (De Valois et al., 

1982) as well as psychometric studies (Polat and Sagi, 1993, Teichert et al., 

2007). In a series of contrast detection tasks, Polat and Sagi found evidence 

of scale-independent inhibitory and excitatory subregions in the human visual 

cortex (Polat and Sagi, 1993).  

Teichert et al. attempted to characterise how the receptive field properties of 

V1 neurons varied with preferred spatial wavelength (Teichert et al., 2007). 

The sizes of grating summation fields and inhibitory surrounds increased with 

preferred spatial wavelength. This supports the hypothesis that processing in 

V1 supports scale-invariant visual performance. The scale-invariant self-

similar hierarchy of receptive fields may help with perspective judgements 

and looming (the sudden increase in size of an image, often resulting from 

rapid approach).  

As discussed in Section 1.3.1, the mapping of visual cortical cells in V1 is 

approximately log-polar in radius (centred on the fovea), with the cortical 

region representing the fovea being larger (Tootell et al., 1988, Schwartz, 

1980, Adams and Horton, 2003). Thus, if a person fixates on an object that 

looms towards them, such that its visual field area increases by r, the cortical 

representation of the object  increases by log(r). Therefore, the relative size 

and shape of its cortical representation is maintained (Abdullah et al., 2012). 

In this context, Abdullah et al. investigated the effects of image contrast, 

stimulus density, and viewing distance upon a multifocal VEP method called 

MSV (Abdullah et al., 2012), which uses annular stimuli centred on the fovea. 

They found that viewing distance did not greatly affect response amplitude, 

suggesting that scaled annular stimuli can be used to study central and 
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peripheral disease (Abdullah et al., 2012). Taken together, these findings 

have implications for visual psychometric studies where stimuli size (and 

pixel size) may vary.  

 

1.4 Natural Images and Information Theory 

1.4.1 Information Theory 

Information theory was originally developed in 1948 by Claude Shannon 

(Shannon and Weaver, 1948) (reviewed in (Shannon, 2001)). Information 

theory was originally conceived to address problems in the signal 

transmission (for example, finding the limit of signal compression for a given 

level of transmission reliability). More broadly, the theory has implications for 

the quantification of other types of information; therefore, it now plays an 

important role in modelling neurobiological systems and as such is directly 

pertinent to this thesis (Shannon and Weaver, 1948, Shannon, 2001).  

There are two primary theorems of information theory, both of which relate to 

its canonical problem: the transmission of information over a noisy channel 

(Shannon and Weaver, 1948, Shannon, 2001). Firstly, according to source 

coding theorem, the number of bits needed to represent the result of an 

uncertain event is given by its entropy. Entropy quantifies the uncertainty 

involved in predicting the value of a random variable. Secondly, according to 

noisy-channel coding theorem, reliable communication is possible 

over a noisy channel, provided that the rate of communication is below a 

threshold; this threshold is called the channel capacity (Shannon and 

Weaver, 1948, Shannon, 2001).  
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Motivated by information theory, Attneave proposed that the goal of the 

visual system is to generate an efficient representation of the incoming signal 

(Attneave, 1954). In the neurological context, Barlow hypothesized that 

efficient representation must involve the removal of statistically redundant 

information during early vision (Barlow, 1961, Barlow, 2001). Variants of this 

efficient coding hypothesis have been formulated by several authors 

(Laughlin, 1981, Van Hateren, 1992c, Field, 1994, Atick and Redlich, 1992). 

The efficient coding hypothesis states that neurons have limited energy 

budgets and information capacities; therefore, they should not waste energy 

nor bandwidth by transmitting redundant information (Barlow, 1961, Barlow, 

2001). To put it another way, in order to maximise available computing 

resources, neurons should encode as much functional information as is 

structurally and energetically sustainable. Reducing informational 

redundancy potentially increases the amount of information that can be 

transmitted through the channels of the visual system.  

Natural images contain a considerable amount of redundant information, so 

redundancy reductions are readily achievable. Image regions are spatially 

correlated, as discussed in Section 1.2 (Griffith, 2003, Srinivasan and 

Shobha, 2008, Heilbronner and Barrett, 2013). Natural images contain large 

amounts of structural information in the form of higher-order spatial 

correlations (Figure 4) (Franz and Schölkopf, 2005). Images may also be 

considered to be correlated in time, depending on their rate of change. 

Kersten demonstrated informational redundancy experimentally by asking 

human subjects to restore missing grey levels from 128 pixel square images 

(Kersten, 1987). Based on the resulting performance functions, Kersten 
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estimated that the images contained informational redundancies of 46-72% 

(Kersten, 1987). Consistent with efficient coding, the human visual system 

must employ mechanisms that remove redundant information, whilst 

retaining that image statistics that are behaviourally relevant.  

Experimental approaches to efficient coding can be divided into two types, 

which will be discussed in Section 1.4.2. The most direct approach is to 

record the responses of visual neurons when exposed to naturalistic stimuli. 

This approach is analogous to that discussed in the preceding sections. i.e.: 

it is a bottom-up approach, where basic neurophysiology is examined and 

models of visual processing are built up from those observations.  

An alternative, complementary, approach is to consider vision from a top-

down perspective; that is, analyse the informational content of natural 

images and consider the challenges it presents for visual processing. The 

evolution of sensory systems, including vision, has been driven by 3 factors: 

the tasks that the organism must perform, its environmental constraints, and 

the computational limitations of neurons (both structural and metabolic) 

(Simoncelli and Olshausen, 2001). Visual processes have been shaped by 

evolutionary pressures and can therefore be assumed to be exquisitely 

adapted to their function. It therefore follows that the computational analysis 

of image statistics can reveal the underlying properties of neurons 

themselves.  

In this context, note that the efficient coding hypothesis, as originally stated, 

does not guarantee the accuracy of neural representation, nor the effects of 

contaminating noise (Simoncelli and Olshausen, 2001). Furthermore, neural 
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efficiency may be assumed to depend both on the statistics of the input and 

on the transformation which maps it to neural responses. Therefore, because 

coding efficiency may vary between different inputs, analyses based on 

information theory should be based on large populations of images.  

 

1.4.2 Neurological Studies related to Information Theory 

Direct experimental support for efficient coding has emerged from studies of 

large monopolar cells (LMCs), first-order interneurons in the fly compound 

eye (Laughlin, 1981) that are analogues to the bipolar cells of the vertebrate 

retina. The dynamic range and signal to noise ratios of neurons are 

necessarily limited so, in order to maximise their information capacity, their 

sensitivity must be set at the correct level. If their sensitivity is too high, 

inputs will saturate and information will be lost through clipping. Conversely, 

if their sensitivity is too low, a proportion of the response range will not be 

utilized. Laughlin found that LMCs maximise their informational capacity by 

incorporating an optimised intensity-response function (Laughlin, 1981).  

The encoding of a high quality image, such as one illuminated by a bright 

light, benefits from redundancy reduction. However, redundancy reduction 

may be problematic at low light levels, where is can enhance spatial and 

temporal fluctuations due to noise (Van Hateren, 1992c). Therefore, a 

mechanism is required which can adapt to different signal to noise ratios 

(SNRs) and reduce image redundancy only when the SNR is high. Van 

Hateren proposed a model which maximizes information flow through a noisy 

channel of limited dynamic range (Van Hateren, 1992a, Van Hateren, 
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1992b). At low SNRs, the channel filter has low-pass characteristics. At high 

SNRs, the filter has band-pass characteristics. The author found that neural 

images obtained by recording from second-order fly neurons were consistent 

with theoretical predictions based on this information maximisation model 

(Van Hateren, 1992a, Van Hateren, 1992b).  

Srinivasan et al. provided the first evidence that the visual system takes 

advantage of the correlational structure of natural images to implement 

redundancy reduction (Srinivasan et al., 1982). Receptive field architecture 

exploits the degree of correlation in images by taking a weighted mean of the 

signals in neighbouring receptors. Thereby, a statistical prediction of the 

redundant component of the signal at the centre is produced. The predicted 

value is subtracted from the actual centre signal. The predictive part of the 

model incorporated the autocorrelation function (ACF). In this manner, the 

entire dynamic range of a neuron can be devoted to encoding non-redundant 

intensities; this also minimizes the effects of intrinsic noise. Srinivasan 

termed this process predictive encoding and it has the effect of reducing 

spatial redundancy. Note that the redundant information removed is second-

order (Srinivasan et al., 1982). 

Field et al. undertook a series of studies which related the properties of 

visual cortical cells to the statistics of natural images (Field, 1987, Field, 

1994). The authors evaluated various coding schemes; for example, an 

optimization over the parameters of a Gabor function derived from a range of 

response properties that were characteristic of cortical simple cells (Field, 

1987). Based on this analysis, the authors concluded that visual neurons are 

optimized for the coding of natural images. Furthermore, the spatial-
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frequency and orientation tuning of simple cells is optimized for a sparse 

coding representation. In sparse coding, most visual neurons have small 

amplitude responses. To put it another way, the goal of sparse coding is to 

have a minimum number of cells highly active at any one time; this may in 

fact mean that the total number of cells is greater than the absolute minimum 

required to represent the image. As described in Section 1.2.5 such a 

representation is over-complete. By contrast, a true Gabor representation 

uses the minimum number of cells per image, and so all cells are often 

active. Sparse coding simplifies visual processing as it promotes the 

detection of redundant image statistics (Field, 1987).  

Direct evidence of sparse coding was subsequently obtained by Vinje and 

Gallant (Vinje and Gallant, 2000). They recorded V1 responses from 

conscious macaques whilst they viewed natural scenes. The authors found 

that, during natural vision, interactions between classical and non-classical 

receptive fields resulted in the formation of sparse representations of the 

visual scene (Vinje and Gallant, 2000).  

An interesting demonstration of sparse coding was published by Olshausen 

et al. They used learning algorithms to derive sparse linear codes from 

natural images (Olshausen and Field, 1996, Olshausen and Field, 1997). 

Starting from random initial conditions, the set of functions that emerged after 

hundreds of thousands of training sets strongly resembled the canonical 

simple receptive field architecture. I.e. they were oriented, spatially localized, 

and band-pass for different spatial frequencies (Olshausen and Field, 1996, 

Olshausen and Field, 1997).  
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Several other authors have taken a similar approach using independent 

component analysis (ICA) of natural images and have observed the 

emergence of functions resembling simple cell receptive fields (Bell and 

Sejnowski, 1997, Hurri, 1997, Hurri et al., 1996, van Hateren and van der 

Schaaf, 1998, Wachtler et al., 2001). For example, Wachtler et al. used ICA 

to study the efficient representation of colour in natural scenes. When 

applied to image patches, they observed that some basis functions were 

achromatic and others indicated colour opponency (although the latter were 

not strictly orthogonal). The authors suggest that non-orthogonal opponent 

encoding of photoreceptor signals produces higher coding efficiency. 

Compared to PCA analysis, ICA resulted in a more sparse representation 

and a higher coding efficiency (Wachtler et al., 2001). The PCA derived 

functions did not resemble V1 receptive fields. 

As pointed out by van Hateren, the ICA model is abstracted and ignores 

many aspects of simple cells, such as nonlinearities and contrast adaptation. 

Nevertheless, the model has interesting information theoretic implications. If 

one of the main functions of simple cells is the decomposition of the visual 

scene into independent components, it is not surprising that the distribution 

of properties (spatial frequency, orientation, etc.) is determined by the 

statistics of the visual environment (van Hateren and van der Schaaf, 1998). 

In evolutionary terms, sparse coding makes logical sense. Degrees of coding 

sparseness can be thought of as a continuum (Foldiak, 1995, Olshausen and 

Field, 2004). At one extreme are dense codes, where many visual neurons 

respond to most stimuli. For example, a strict Gabor representation would 

have only as many cells as retinal inputs (a sort of minimal sampling rate 
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representation). Due to the large numbers of constantly active neurons, this 

representation would be metabolically inefficient, if compact. At the other 

extreme are over-complete sparse codes (Olshausen and Field, 1996), 

which contain more cells than inputs. In this case, neuronal responses can 

be more selective for particular image features. As a result, relative few cells 

are active for any one image (in the limit one cell for every possible image). 

Thus, an unsustainably large number of neurons would be required to 

encode visual information, but would provide a low metabolic cost to 

represent any particular image. That being said, the costs of maintaining an 

overly large brain, together with capacity of the cranium, are limiting. The 

previously mentioned Wigner distribution is an example of such an over-

complete sparse code, in which the main cell types are like complex cells. 

The ICA analysis of natural scenes discussed above tends to generate over-

complete sparse codes (Bell and Sejnowski, 1997).  

Thus, the extremes are inefficient, albeit in different ways. Conversely, if 

neurons encode only the most informative visual information, the resultant 

sparse codes can transmit information with minimal redundancy (Foldiak, 

1995, Olshausen and Field, 2004). Evolutionary pressure can reasonably be 

assumed to have selected coding strategies that are optimally efficient in 

both informational and metabolic terms (if we assume the absence of 

conflicting evolutionary pressures). This is conceptually consistent with the 

observation by Balasubramanian, that sensory systems invest their 

resources in relation to the expected information gain (Balasubramanian and 

Sterling, 2009).   
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The majority of research into the visual responses of single striate cortical 

neurons has focused on two-point spatial correlations, as encapsulated by 

spatial frequency and orientation tuning. As mentioned above, the Fourier 

transform of the power spectrum is the auto-correlation function, so the view 

of early cortical processing being like a Gabor representation is equivalent to 

considering only second-order correlations. There has been less research 

into the processing third- and higher-order correlations, despite their ubiquity 

(Figure 4). Purpura et al. noted that while two-point correlations provide the 

visual system with information about spatial frequency content, encoding 

features such as contours requires mechanisms that are sensitive to third- 

and higher-order correlations (Purpura et al., 1994a). Higher-order image 

statistics may have been traditionally neglected as they are more challenging 

to analyse (Geisler, 2008), or because the second-order characteristics of 

visual neurons are better understood. However, higher-order image statistics 

are central to our perception of natural image features such as textures and 

contours (Oppenheim and Lim, 1981). In this context, the study by Tkacik et 

al. is particularly relevant (Tkacik et al., 2010).  

Tkacik et al. analysed the fourth-order spatial correlations and intensity 

histograms of natural images. They then classified these image statistics 

according to how informative they were about the local structure of natural 

images. Fourth-order correlations that were most informative were also found 

to be the most visually salient (Victor and Conte, 1991, Julesz et al., 1978). 

Sensitivity to the latter high-order correlations is known be encoded by the 

visual cortex (Victor and Conte, 1991, Purpura et al., 1994b). The authors 

suggest that the visual system filters out predictable (and therefore 
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perceptually non-salient) high-order structural information from natural 

images, whilst retaining that which is not predictable (and therefore most 

salient) (Tkacik et al., 2010). This study suggests that efficient coding applies 

to high-order spatial correlations. Zetzsche et al. have proposed that end-

stopping may be important in the filtering out of redundant higher-order 

structural information (Zetzsche and Rohrbein, 2001). 

In the context of the above discussion, it is clear that investigating higher-

order correlations - and how they are processed - is important to 

understanding the human visual system. Such investigations may also tell us 

a great deal about cortical functioning (Victor, 1995, Purpura et al., 1994b, 

Victor and Conte, 1996). One way to approach the problem is to use 

artificially generated textures (as opposed to natural images) to probe the 

sensitivities and limitations of visual perception. 

 

1.5 Textures and Texture Perception  

This thesis makes extensive use of isotrigon textures; this section will 

introduce the concept of texture, before considering the nature of isotrigon 

textures and how they are perceived.   

The natural world is rich with texture and the surface of any visible object is 

textured at some scale. We have an intuitive sense of what texture means, 

but it is harder to define in precise terms. Texture can be considered the 

property of stuff in an image, as opposed to distinct features such as edges 

(Adelson and Bergen, 1991). Alternatively, texture is  an "organised area 

phenomenon'" which can be decomposed into primitives with specific spatial 
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distributions (Haralick, 1979). However, textures are often highly variable and 

demonstrate contradictory properties, which challenge a strict definition 

(Landy and Graham, 2004, Bergen and Adelson, 1991, Adelson, 2001).  

We intuit that texture is a visual indicator of surface properties, but it can also 

be a visual cue to planar orientation and depth (Landy and Graham, 2004, 

Bergen and Adelson, 1991). In a given scene, boundaries may be delineated 

by colour-opponent mechanisms or differences in contrast (Landy and 

Graham, 2004). However, humans are also adept at performing image 

segregation based on textural information (Landy and Graham, 2004). 

Adelson posits that texture allows observers to determine whether two 

regions are composed of different substances (Adelson, 2001). In this 

manner, differently textured regions may lead to the perception of a 

segregating border. Continuous changes in texture may also result in the 

perception of three-dimensional shape (Gibson, 1950, Blake et al., 1993, 

Todd et al., 2004). This naturally leads to the question: what aspects of 

image structure lead to image segregation based on texture? 

As Victor points out, "…basic visual judgments are fundamentally statistical 

in nature…" and image statistics are central to our understanding of texture 

perception (Victor and Conte, 2012). In a series of pioneering studies, Julesz 

et al. hypothesised that humans could not discriminate textures whose 

second-order correlation functions were the same (so-called isodiople 

textures) (Julesz, 1962). The second-order hypothesis was initially difficult to 

test due to the lack of textures with controlled image statistics (Victor, 1988, 

Victor and Conte, 2012). Although initially supported (Rosenblatt and 

Slepian, 1962), subsequent studies identified discriminable isodiople textures 
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and the hypothesis was proved false (Caelli and Julesz, 1978, Caelli et al., 

1978). A subsequent study by Julesz et al. identified a class of textures 

which, although discriminable, had similar first- to third-order correlation 

functions and these were termed isotrigon (Julesz et al., 1978).  

The word isotrigon derives from the fact that the average first- to third-order 

correlation functions of small collections these textures is zero, as is the case 

for uniform noise (Maddess et al., 2007). The salient structure in these 

textures is therefore exclusively due to fourth- and higher-order spatial 

correlations (Maddess et al., 2004, Maddess et al., 2007, Julesz et al., 1978, 

Victor, 1994, Gilbert, 1980). Thus, in order to discriminate a particular 

isotrigon texture from noise patterns, it is necessary to identify its average 

complex, higher-order structure; isotrigon textures cannot be discriminated 

based on luminance or other lower-order properties. Whereas some textures 

are clearly structured and readily recognisable, others cannot be easily 

differentiated from noise (Maddess and Nagai, 2001). A wide variety of 

isotrigon ensembles have been identified, including binary (e.g. black and 

white) and ternary or multi-level (black, white, and grey) (Julesz et al., 1978, 

Maddess et al., 2004, Maddess et al., 2007).  

Isotrigon textures are an important visual psychometric tool for studying 

texture perception. Whereas the complexity of natural stimuli makes it 

difficult to determine which image statistics are relevant, the image statistics 

of isotrigon textures can be carefully, independently controlled (Victor and 

Conte, 2012, Maddess et al., 2004, Victor and Conte, 1991). Furthermore, it 

has been shown that what confers visual salience in isotrigon textures also 

confers visual salience in natural images (Tkacik et al., 2010). That humans 
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and primates are sensitive to the higher-order correlations in isotrigon 

textures has been demonstrated in a number of psychophysical (Maddess 

and Nagai, 2001, Maddess et al., 2007, Victor and Conte, 2005), VEP (Victor 

and Conte, 1991), fMRI (Beason-Held et al., 1998a, Beason-Held et al., 

2000), and PET (Beason-Held et al., 1998b) studies, in addition to single cell 

recordings (Purpura et al., 1994b).  

 

1.5.1 Binary Isotrigon Textures 

Most of the isotrigon textures used to date have been created using a 

recursion procedure (or cellular automata method). In this method, a 

recursively applied combinatorial rule operated on N pixels selected by a 4x4 

pixel gliding template (or glider), determines the value of an output pixel. This 

is the deterministic method of isotrigon texture generation (Victor and Conte, 

1991). The recursive process was originally described by Gilbert (Gilbert, 

1980). The initial condition for texture generation is random binary noise 

(50% black and white pixels). The process is deterministic because the set of 

initial conditions defines the textures obtained: all of the possible textures 

generated are completely determined by the first few rows and columns of 

the boundary pixels within the noise pattern (Maddess and Nagai, 2001, 

Maddess et al., 2007, Taylor et al., 2008).  

Although particular patterns are created, the statistics of deterministic 

textures do not depend on the initial pixel values or in which direction the 

recursion commences. Binary isotrigon textures, and other texture types, 

may also be produced via a stochastic method, which allows for more 
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complex refinement of image statistics (Victor and Conte, 2012). Examples 

of the first ensemble of binary isotrigon textures, the VnL2 textures, are 

shown in Figure 14. According to this nomenclature, V refers to the number 

of input variables in the glider, and L refers to the number of levels (2 for 

binary textures and 3 for ternary textures). In this thesis, binary isotrigon 

textures are used extensively in Chapters 2 and 3.   

 

Figure 14. The upper row shows the gliders (gliding templates) that 

were used to create the textures. The gliders shown here have been 

greatly magnified; in reality, their pixels are the same size as those of 

the textures below. Each glider can generate two related texture types 

termed "Even" and "Odd" (Gilbert, 1980). Pixels marked abc are the 

input pixels, and f is the position of the output pixel. Each texture 

originates from a matrix of binary noise where each colouring (black or 

white) is equally likely. The glider is then moved in steps of one pixel 

at a time, across the matrix recursively, modifying the entries using 

the selected rule until the texture is complete (Maddess and Nagai, 

2001). 
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1.5.2 Ternary Textures 

A large number of ternary textures have been discovered (Maddess et al., 

2004, Maddess et al., 2007, Taylor et al., 2008). Ternary textures can be 

produced via both a deterministic method (Maddess et al., 2004, Maddess et 

al., 2007) and the stochastic method, which has previously been described 

for binary textures (Victor and Conte, 2012). Whereas the binary textures 

previously discussed are composed of black and white pixels, the ternary 

textures have three levels: black, white and the mean luminance grey 

(contrasts -1, 0 and 1). The full range of ternary textures is larger than that of 

the binary isotrigon textures. 

In the deterministic process for producing ternary texture, outlined by 

Maddess et al. (Maddess et al., 2007), each texture ensemble is generated 

via 24 arithmetic rules and a cellular automata method, combining a 3x3 

pixel glider, which defines three input pixels (grey) and one output pixel 

(white). These produce 3V3L ternary textures (with three input variables and 

three levels). In combination with 20 commonly used glider patterns, this 

process generates 216 texture classes (Maddess et al., 2007). 

The recursive process is similar to that discussed above for binary textures. 

The gliders and rules together specify how the values of each input pixel are 

combined to dictate the value of the output pixel. Each texture is initialized 

with ternary noise. The glider is then moved across the matrix recursively, 

interacting with matrix elements according to the rules. Therefore, newly 

instantiated pixel values may in turn feed back into the process (be selected 

by the input pixels) as the glider moves across the nascent texture (Maddess 
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et al., 2004, Maddess et al., 2007, Taylor et al., 2008). As with the binary 

isotrigon textures, the process is deterministic because the set of initial 

conditions (random boundary pixels) defines the textures obtained (Maddess 

et al., 2004, Maddess et al., 2007) (Figure 15). 

 

Figure 15: Single ternary texture examples from 21 ensembles 

(Taylor et al., 2008). Textures within each ensemble are generated by 

a set of arithmetic rules. The gliders are shown in the leftmost column. 

The grey squares indicate input pixels and the white square, the 

output. The ternary texture is formed as the glider moves recursively 

across the surface of a ternary noise pattern. When the glider 

interacts with a randomly assigned pixel in the ternary noise pattern, 

the value of that pixel may be changed. The result of the interaction 
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depends on a) the pixel value, b) the structure of the glider and c) one 

of a set of arithmetic rules. These rules are labelled on the x axis (M0, 

M1, I0, I1, and I2) and they insure the higher-order properties of the 

ternary textures (Maddess et al., 2007).  

Various types of statistically constrained textures, including isotrigon 

textures, can also be produced using a stochastic method, which has been 

developed by Victor et al. and previously described for binary textures (Victor 

and Conte, 2012). This process is readily adaptable for producing ternary 

textures. The statistics of these stochastic textures can be controlled in more 

sophisticated ways, but they share the same statistics as their deterministic 

counterparts. The relationship between the stochastic and deterministic 

ternary texture cohorts was investigated by analysing histograms of 

primitives (HoPs). HoPs count the number of unique texture primitives 

(typically a 3x3 pixel sample) within a texture example and thereby uniquely 

identify a texture type (Maddess et al., 2007). Discounting rotations and 

reflections, the stochastic and deterministic textures were found to be the 

same (Maddess, 2015). The use of HOPs will be discussed further in 

Appendix 6.6. 

Palettes of stochastic ternary textures are created in a space, where the 

central location contains random ternary noise; the three corners of the 

space are texture archetypes and the remaining space is filled with 

quantitatively derived mixtures (Victor and Conte, 2012). The simplest 

stochastic manipulation is illustrated in Figure 16: controlling the statistics of 

single pixels without reference to any other pixels; these ternary textures 

have been called "gamma" (Victor and Conte, 2012). This planar 
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arrangement of ternary textures is referred to as a trico plane and the 3 

principle axes the trico axes.  

The trico plane is a contrivance which enables what is a three-dimensional 

image space to be displayed in two-dimensions. The three orthogonal colour 

axes (black, grey and white) are projected onto a triangular plane via use of 

the three complex cube roots of -1 as the axis directions; this forms the axes 

of an equilateral triangle, where the length of each axis vector is 1 (Victor 

and Conte, 2012). Lines in the space that traverse from the centre point to 

the borders are referred to as rays. In order to explore the trico space, we 

have selected 6 rays across each trico axis: the 3 principle axes and the 

perpendicular bisectors of the borders. Along each ray that borders the trico 

axis, the frequency of one of the three pixel levels increases to the mid-point, 

where it becomes the dominant colouring. At the centre of the trico axis, all 

three colourings of pixels are equally likely; the central texture is therefore 

uniform ternary noise (Figure 16).  

The ternary textures are classified according to the number of pixels that are 

constrained within a 2x2 pixel grid. If a single pixel is constrained, they are 

called "gamma" (as shown in Figure 16). If 2 pixels are constrained, they are 

termed "beta_hv" or "beta_diag" (depending on the orientation of the 

constrained pixels). If triplets of pixels are constrained they are termed 

"theta" and quadruplets of pixels constrained are "alpha" (Victor et al., 2013, 

Victor and Conte, 2012). 

A further subdivision can be applied which depends on the orientation in 

which the pixels are constrained; this is known as the "linear combination". 
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Based on simple combinatorics, the ternary texture families have the 

following number of linear combinations: gamma (1), beta_hv (2), beta_diag 

(2), theta (4), and alpha (8); these correspond to constraints on first, second, 

third, and fourth order special correlations respectively. Texture types can 

also be combined (for example, gamma-theta). Therefore, a large number of 

these ternary textures are available for study (Victor et al., 2013, Victor and 

Conte, 2012). 

 

Figure 16.  A trico plane showing the gamma ternary textures. The 3 

orthogonal colour axes (black, grey and white) are projected onto a 

triangular plane. Along each outside edge, the frequency of one of the 

three pixel levels increases to the mid-point. The central space 



Chapter 1: General Introduction 

72 
 

contains ternary noise. The six rays are shown in red; note that they 

extend from the central position, which represents ternary noise. The 

captions above each ternary texture indicate the pixel probabilities for 

black, grey, and white respectively. 

Along each ray, the number of subdivisions (and hence the number of 

textures), are referred to as steps. In broad terms, the distance of the step 

from the centre of the trico axis (ternary noise) affects how difficult the 

ternary texture is to discriminate. To put it another way, the step is a 

measure of decorrelation between 1 and 0, 0 being ternary noise (the central 

axis position) and 1 indicating no decorrelation (at the ends of each ray). 

Thus, in order to identify a given ternary texture, a specific nomenclature has 

been adopted. For example, "alpha_ABCD1111_B_0.0433" indicates that 

the ternary texture family is "alpha"; the arrangement of the pixels 

constrained are "ABCD1111", where "1111" indicates the linear combination; 

the pixel level (colour) bias is "B" (black); and the step is 0.0433, which 

indicates a high level of decorrelation, i.e. the pattern occurs 0.0433 of the 

distance from the centre along the principle axis (ray) pointing to the black-

biased corner.  

An alternative way to visualize the ternary textures, which emphasizes the 

effect of the step (decorrelation), is shown in Figure 17. For each texture 

family (in this case gamma) we can display a grid of textures for the 6 

different predefined rays; these rays are the same as those shown in Figure 

16 above. The textures are displayed with increasing levels of decorrelation 

(steps). So, in the example shown in Figure 17, 10 levels of decorrelation are 

displayed, from far left (no decorrelation) to far right (most decorrelation). 
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This corresponds to gamma textures that are obtained by starting from an 

outer position on the trico axis and then working in towards the middle, taking 

10 steps, along each ray.  

 

Figure 17. Examples of ternary gamma textures, displayed to 

emphasise the effect of decorrelation on discrimination performance. 

Five rays are represented by the y axis, with ternary noise at the top 

(the rays are shown in Figure 16 above on a trico axis). Each step is 

represented by displacement along the x axis and in this case 10 

steps are shown. Step 1 is equivalent to zero decorrelation (far left) 

and step 10 is equivalent to complete decorrelation (far right). The 

textures are presented on a background of ternary noise. Compare 

the effect of increasing decorrelation on visual salience. 
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This method of display indicates the primary strength of the stochastic 

method: by adjusting the level of decorrelation, the discrimination difficulty of 

each ternary texture can be independently controlled. When used in 

psychometric studies, this allows for the calculation of performance 

functions, whilst avoiding performance saturation. That is, by adjusting the 

level of decorrelation one can find a desired noise level that yields a criterion 

probability correct (e.g. a limen of 70%). This, and the ability to mix different 

types of ternary texture, is the primary motivation for using the stochastic 

method of ternary texture generation. After gathering performance functions 

for the reasonable dimensions within the trico axes, they can be used to 

evaluate perceptual sensitivity within three-dimensional ternary texture space 

(Victor et al., 2005, Victor et al., 2013, Victor and Conte, 2012). In this thesis, 

ternary textures are used in Chapter 4, which also includes a detailed 

discussion of their production and analysis (Section 4.3.3).   

 

1.5.3 Is Grey Perceived Differently? 

The ternary isotrions differ from their binary counterparts by the presence of 

a third level, grey. Therefore, a natural questions is whether the grey token of 

ternary textures has special properties with regard to texture perception. i.e: 

according to the current literature on lightness/brightness perception, is grey 

perceived differently to black and white?  

According to the standard terminology, lightness refers to the apparent 

reflectance of a surface within a visual scene, whereas brightness refers to 

the apparent luminance of a patch within the image itself (Evans and Bartley, 
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1948, Kingdom, 2011). Lightness constancy in natural scenes is generally 

good. Although we rarely experience lightness errors, as pointed out by 

Kingdom (Kingdom, 2011) "…the study of lightness perception…has been 

dominated by an exhaustive examination of its errors". Such errors, elicited 

by synthetic stimuli, provide clues as to how the visual system functions 

(Kingdom, 2011).  

It is now well established that the perceived brightness of a region of visual 

space is not solely related to that regions' luminance; it also depends on the 

luminance of adjacent regions. This phenomenon is known as brightness 

induction and includes both brightness contrast and assimilation effects. 

Brightness contrast effects occur when the brightness of a test region shifts 

away from the brightness of adjacent regions. The canonical example of this 

is the simultaneous brightness contrast illusion (SBC), first reported by 

Chevreul (Chevreul, 1855). In this illusion, a grey patch on a white 

background looks darker than a grey patch of equal luminance on a black 

background (Figure 19) (Heinemann, 1955, Williams et al., 1998). 
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Figure 19. An example of the simultaneous brightness contrast 

illusion (SBC). Although they appear to differ in brightness, in reality 

the luminance of the two grey patches is equal (Purves et al., 2001). 

 

Another influential class of lightness error is brightness assimilation. 

Brightness assimilation is the opposite of brightness contrast, in that 

lightness appears to shift towards that of the surround. Thus, a grey patch on 

a black background appears darker than a grey patch of equal luminance on 

a white background. One of the most intensely researched brightness 

assimilation illusions is White’s Effect (White, 1979). In White’s Effect, the 

two sets of grey bars have the same luminance, but differ markedly in their 

perceived brightness, which shifts towards that of the flanking bars (Figure 

20)  (Anderson, 2003), seemingly opposite to the result observed in Figure 

19. 

 

Figure 20. An example of White’s Effect, a brightness assimilation 

illusion. The perceived brightness of the two grey bars appears to shift 
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towards that of the flanking bars; the ground truth is that both bars are 

equiluminant (Anderson, 2003). 

 

First described by Cornsweet, a third lightness illusion is the Craik-O’Brien-

Cornsweet (CCOB) (Cornsweet, 1970). In this case, illusory brightness 

values are afforded to regions based on the perception of edges (Figure 21) 

(Purves et al., 1999). Note how the region to the right of the CCOB edge 

looks slightly lighter than the region to its left. The ground truth is that the 

brightness of both areas is the same. Thus, the CCOB is a brightness 

induction phenomenon in which the central edge of an opposing pair of 

luminance gradients makes adjoining equiluminant regions appear dissimilar 

(Cornsweet, 1970). 

The CCOB effect has traditionally been interpreted as evidence for the filling-

in of lightness information (Kingdom, 2011). Filling-in describes a process 

that begins with edge detection and is followed by a propagation of neural 

activity which fills in the intervening regions. According to this model, 

brightness values are determined by what happens at the edges of image 

elements (Cohen and Grossberg, 1984).  

Examples of brightness induction and brightness assimilation demonstrate 

the profound influence that context plays on brightness perception. Research 

into their neurophysiological basis has uncovered details regarding how the 

visual system functions.   
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Figure 21. An example of the Craik-O’Brien-Cornsweet effect (CCOB) 

(Cornsweet, 1970). In this brightness induction phenomenon, the 

regions to the left and to the right of the CCOB edge have equal 

luminance, but they appear to be different (Purves et al., 1999). 

The prevailing wisdom was that lightness was encoded in the retina. For 

example, Cornsweet championed the idea that SBC resulted from reciprocal 

interactions between retinal neurons (Cornsweet, 1970). By this account, 

SBC is caused by lateral inhibition by neighbouring receptive fields at the 

contrast boundaries; this has the secondary effect of enhancing edge 

detection (Purves et al., 2001, Sekular and Blake, 1994, Coren, 2003). 

Therefore, any target surrounded by an area of higher luminance should be 

perceived as darker than the ground truth, and vice-versa (Cornsweet, 

1970).  

However, according to more modern accounts, lightness and brightness 

perception is a multi-stage process involving both retina and cortex. Whereas 
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the retina normalizes luminance variations and encodes rudimentary contrast 

information, cortical neurons in the ventral stream explicitly signal lightness 

and brightness. In Section 1.5.4 below, we discuss various studies involving 

gain control mechanisms (Graham and Sutter, 2000, Heeger, 1992b, 

Maddess et al., 1988, Shapley and Enroth-Cugell, 1984). 

The illusions discussed above can be explained by models based on low-

level spatial filtering (Dakin and Bex, 2003, Blakeslee and McCourt, 2008, 

Blakeslee and McCourt, 2004, Blakeslee and McCourt, 2012). One such 

model has been described in a series of papers by Blakeslee and McCourt. 

Their model, called the Oriented Difference of Gaussians (ODOG), can 

explain most brightness illusions (Blakeslee and McCourt, 2008, Blakeslee 

and McCourt, 2004, Blakeslee and McCourt, 2012). The core idea of the 

ODOG model is as follows: although the model cells possess filters tuned to 

very low spatial frequencies, their range is necessarily finite so they need to 

incorporate a gain control mechanism.  This means that, in the case of 

artificial images whose low spatial frequency content has been greatly 

reduced, the model cells increase their gain and thereby restore low spatial 

frequency content to physiologically expected, prior values; this has the side-

effect of inducing lightness effects.  

Note that in these high pass filtered images, the residual low frequency 

information is located near high contrast borders. Like cortical cells, the units 

in ODOG are orientation specific (Figure 22) so the gain changes can also 

be orientation specific. This can explain illusions like White’s effect (White, 

1979, Blakeslee and McCourt, 2004). Consequently, reconstituted images 

lack some of the low spatial frequency information which is present in the 
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ground truth image. The loss of these frequencies results in brightness 

induction (Blakeslee and McCourt, 2008, Blakeslee and McCourt, 2004, 

Blakeslee and McCourt, 2012). 

Blakeslee and McCourt posit that the most responsive filters to White’s Effect 

stimuli are appropriately tuned high spatial frequency, vertically-oriented 

filters. Contrast normalization attenuates the response of these vertical 

filters, relative to those tuned to horizontal orientations. In response to 

White's Effect stimuli, horizontally-oriented filters pool the luminance of the 

flanking bars with those of the test patches. However, because the 

responses of the vertical filters have been disproportionately attenuated, the 

relative contribution of the flanking bars is enhanced. This results in the 

brightness assimilation illusion observed in White's Effect (Figures 20 and 

22) (Blakeslee and McCourt, 2008, Blakeslee and McCourt, 2004). A closely 

related model has been described by Dakin and Bex’s (Dakin and Bex, 

2003), wherein the contrast normalization stage equates filter responses 

across spatial-frequency, not orientation. 
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Figure 22. ODOG model as applied to White’s Effect. (a) filter profile; 

(b) filters of different spatial scales and orientations are summed at a 

given orientation; (c) filter gains as a function of centre spatial 

frequency; (d) orientations of combined filters; (e) White’s Effect 

stimuli; (f) the result of convolving each stimulus with d; (g) contrast 

normalization equates root mean squares of filter outputs; (h) outputs 

are summed across filter orientation (Blakeslee and McCourt, 2004). 

 

Taken together, these studies indicate that grey regions are perceived 

differently in that they frequently describe broad regions of no structure, while 
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high contrasts near borders of images define structure. Thus, we may expect 

ternary textures on trico axes with a grey bias to produce different 

performance functions than those for the more traditional black and white 

contrasts. To put it another way, in the human colour space, grey represents 

the origin and not one of the cardinal colour and luminance sensory axes. 

Therefore, grey may be something of an invalid token for colouring a texture 

and not comparable to tokens selected from the principle sensory axes. 

These are questions we are interested in answering and they will be pursued 

in more depth in Chapter 4 in the context of ternary texture discrimination.  

 

1.5.4 The Neurophysiology of Texture Perception  

Whereas simple cells can identify edges of distinct luminance, the 

mechanisms which underpin the detection of texture-defined boundaries are 

less clear. How might texture segregation performance be modelled?  

A basic model has emerged, which consists of three stages (Landy and 

Graham, 2004, Wolfson and Landy, 1995). The first stage involves a set of 

linear spatial filters, akin to simple cells. The second stage involves the 

nonlinear transformation of the output from the first stage (by gain control, 

rectification and/or squaring). In the third stage, a band pass and orientation-

tuned linear filter is applied which enhances texture-defined edges (Bergen 

and Adelson, 1991, Bergen and Landy, 1991, Landy and Graham, 2004, 

Wolfson and Landy, 1995, Victor and Conte, 1991). This sequence of spatial 

filter, nonlinear filter, and second spatial filter has been variously called the 
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back pocket model (Chubb and Landy, 1991) or second-order processing 

(Chubb et al., 2001). 

It should be noted that, in natural images, textural cues often co-occur with 

other cues such as depth, colour, and motion. Therefore, the current model 

is necessarily a simplification. In natural images, edge detection is likely to 

be inferred from a weighted average of multiple cues (Rivest and Cabanagh, 

1996). Furthermore, the presence of multiple cues may improve edge 

detection accuracy (Landy and Kojima, 2001). 

There is some evidence that this model is evolutionarily conserved across 

species. For example, bees can learn to discriminate between patterns 

based on orientation (Srinivasan et al., 1994). The orientation selective 

neurons of bees were investigated by Yang and Maddess (Yang and 

Maddess, 1997). Using narrow (5 degree) bar stimuli, they identified neurons 

with two different orientation tunings in the mid-brain of the honey bee. 

These neurons were found to be functionally similar to those required by the 

texture-extraction model (Yang and Maddess, 1997). Orientation-sensitive 

neurones have also been identified in the dragonfly brain using intracellular 

recordings (O'Carroll, 1993). Interestingly, the physiological properties of 

dragonfly small-target motion detectors are similar to those of mammalian 

hypercomplex cells (O'Carroll, 1993). 

In a subsequent study, Maddess et al. investigated complex texture 

discrimination by bees (Maddess et al., 1999). To do this, they tested bee 

discrimination performance using isodipole textures; these textures can only 

be discriminated from binary noise based on their third- and higher-order 
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correlation functions. Bees were found to be capable of learning to 

discriminate isodipole texture pairings. Furthermore, electrophysiological 

experiments showed the presence of large field neurons that were the sum 

of many small, orientation tuned and rectified sub-units, thus fulfilling a 

requirement for the texture segregation model discussed above (Maddess et 

al., 1999).  

The texture segregation model is predicated on the basis of two types of 

channels. Linear filters can be applied by spatial frequency and orientation 

selective channels (also called simple or first order channels). Also required 

are nonlinear channels (complex, second-order, or non-Fourier channels). 

Evidence for the existence complex channels is now well accepted and 

comes from a number of studies (Chubb and Landy, 1991, Graham et al., 

1992, Graham and Sutter, 1996, Graham and Sutter, 1998, Graham and 

Sutter, 2000).  

In one of the earlier studies, Chubb et al. examined texture segregation 

performance using filtered noise textures. They found that human 

performance functions could be modelled using a set of linear channels, 

tuned for different orientations, followed by an edge detector, which 

incorporated a nonlinearity (Chubb and Landy, 1991). A subsequent study by 

Graham et al. was based on texture segregation performance functions 

(Graham et al., 1992). The authors found that performance functions could 

not be explained by a purely linear model, based on spatial frequency and 

orientation channels. The requirement for a nonlinearity led the authors to 

the hypothesise the presence of complex channels (Graham et al., 1992).  
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A series of studies by Graham et al. have further characterised the properties 

of complex channels (Graham et al., 1992, Graham and Sutter, 1996, 

Graham and Sutter, 1998, Graham and Sutter, 2000). Complex channels 

contain two stages of linear filtering, with an intermediate nonlinearity. The 

intermediate nonlinearity discriminates complex from simple channels and is 

understood to be a full- or half-wave rectification, applied to the output of the 

first filter. At least two types of nonlinearity have been utilized in modelling 

texture segregation; Graham et al. refer to these as being intensive and 

spatial in character. The complex channel nonlinearity is believed to be 

spatial in nature (Graham and Sutter, 1996). 

Graham et al. have also investigated the nature of the intensive nonlinearity 

(Graham and Sutter, 1996). They found it to be already strong at low 

contrasts, indicating rectification. It also occurred after sensitivity to spatial 

frequency and background luminance had been determined (Graham and 

Sutter, 1996, Graham and Sutter, 1998). In their 2000 study, they showed 

that the compressive effect could be explained by a gain control process, 

resulting from inhibition between channels (Graham and Sutter, 2000). Gain 

control allows channels to retain their selectivity over a wide range of 

contrasts (Graham and Sutter, 2000) and, as discussed in Section 1.4, has 

important ramifications for efficient coding (Van Hateren, 1992a, Van 

Hateren, 1992b).  

Gain control is such an important process that some authors have proposed 

it to be the primary function of V1. Cortical cells have a limited dynamic 

range so, without a gain control mechanism, their responses would saturate 
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at high contrasts. Additional evidence for cortical gain control mechanisms 

has come from a variety of sources.  

A study by Maddess et al. found evidence of gain control in area-17 of the 

cat visual cortex (Maddess et al., 1988). Heeger et al. proposed that 

normalization was fundamental to all neurological functions, not only in V1 

(Heeger, 1992b). The authors presented a model in which cortical cell 

normalization was achieved by mutual inhibition between striate cells, 

thereby normalizing their responses with respect to stimulus contrast. In a 

companion paper, this model was compared to physiological measurements 

of cat striate cell responses and they were found to be congruent (Heeger, 

1992a). In particular, the model emphasised the importance of the full- or 

half-wave rectification (Heeger, 1992a). 

Studies on texture-defined motion also indicate the presence of a texture 

grabber (Chubb and Sperling, 1991, Werkhoven et al., 1993, Werkhoven et 

al., 1994, Turano and Pantle, 1989). Werkhoven et al. explored the 

perception of apparent motion between dissimilar gratings (Werkhoven et al., 

1993). Their findings may be explained in terms of a single-channel motion 

computation, consisting of one pre-processing stage followed by standard 

motion analysis. The pre-processing stage is composed of a linear spatial 

filter, followed by a rectification. The authors called this pre-processing 

transformation a texture grabber (Werkhoven et al., 1993). A follow-up study 

by the same authors (Werkhoven et al., 1994) also supported the single 

channel motion computation model, as did an independent study by Chubb 

et al. which used stimuli called texture quilts (Chubb and Sperling, 1991).  
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To date, the functional roles of areas downstream of V1 have been difficult to 

characterize with regard to texture perception. After its participation in the 

early stages of texture segregation, V1 may leave more complex processes 

to higher cortical areas (Levitt and Lund, 1997b, Freeman et al., 2001, 

Lennie, 1998). Some authors have suggested that regions of similar 

structure may not even be grouped until area V4 (Lennie, 1998). Indeed, one 

fMRI study of texture segregation observed only marginal responses to 

texture borders in V1 and V2, but more significant responses in V3, V4 and 

TEO (Kastner et al., 2000) (Figure 18). Lennie has proposed that functions 

such as figure-ground segregation occur in areas V2 to V4 (Lennie, 1998). 

Single-unit studies have also implicated V4 neurons in another higher 

process, the perception of shape from shading (Hanazawa and Komatsu, 

2001, Pasupathy, 2006, Arcizet et al., 2009).  

The role of V2 has historically been particularly enigmatic. V2 accepts 

feedforward input from V1 and its response profile is often indistinguishable 

from that of V1 (Hegdé and Van Essen, 2000, Mahon and De Valois, 2001, 

El-Shamayleh and Movshon, 2011). However, a recent study by Freeman et 

al. indicates that V2 may have a role in the discrimination of natural versus 

synthetic textures (Freeman et al., 2013). The authors observed increased 

responses in V2, but not V1, on presentation of naturalistic stimuli; these 

observations were based on single-unit macaque recordings and human 

fMRI data, the latter of which was predictive of human discrimination 

performance (Freeman et al., 2013). Their stimuli were naturalistic in the 

sense of mimicking the higher-order correlation content of natural images. 
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Which brain regions are involved in isotrigon texture discrimination? In an 

attempt to answer this question, Beason-Held et al. used fMRI to measure 

responses to random textures and Box-Even binary isotrigon textures (Figure 

14) (Beason-Held et al., 1998a, Victor, 1985). The viewing of random 

textures increased activity in the striate cortex, with slight involvement of the 

cuneus and middle occipital, lingual and fusiform gyri. The viewing of Box-

Even binary isotrigon textures resulted in activation of the same areas, but to 

a greater extent. In addition, activation was observed in the middle temporal 

region. Based on these findings, the authors suggest the presence of 

receptive field mechanisms in the ventral visual pathway that are sensitive to 

higher-order spatial correlations (Figure 18) (Beason-Held et al., 1998a). 

Indeed, a subsequent fMRI study by the same authors identified a linear 

relationship between activation in the striate cortex and the density of higher-

order spatial correlations in the textures presented (Beason-Held et al., 

2000).  

In another study by Beason-Held et al. (Beason-Held et al., 1998b) PET was 

used to evaluate regional cerebral blood flow (rCBF) in subjects viewing 

random or Box-Even binary isotrigon textures (as used in (Beason-Held et 

al., 1998a) and (Beason-Held et al., 2000)). The viewing of the isotrigon 

textures resulted in increased rCBF along the occipito-temporal pathway, 

versus the viewing of random textures. Significant activation was identified in 

"…striate, extrastriate, lingual, and fusiform cortices as well as the 

hippocampus and brain stem…" (Beason-Held et al., 1998b). Notably, 

increases in rCBF migrated from the occipito-temporal to the medial temporal 

areas (hippocampus) and frontal lobes following increased exposure to the 
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isotrigon texture stimuli. This suggests the recruitment of higher-order brain 

areas during learning (Beason-Held et al., 1998b).  

 

Figure 18. Differences in brain activation when viewing random and 

binary isotrigon textures. Significant response increases are shown in 

red. A: random texture stimulation (striate cortex, with slight 

involvement of the cuneus and middle occipital, lingual and fusiform 

gyri). B: Box-Even binary isotrigon texture stimulation (significantly 

greater activation of the above areas, plus middle temporal activation). 
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C: differences in activation between A and B (Beason-Held et al., 

1998a). 

Interestingly, these observations suggest that isotrigon texture discrimination 

may also have clinical significance. There is evidence that texture 

discrimination is negatively affected in multiple sclerosis (MS) patients, whilst 

other visual functions are spared (Regan and Simpson, 1995, Regan and 

Hong, 1994). A pattern of higher-order vision impairment has also been 

observed in Alzheimer's disease (AD) patients (Rizzo et al., 2000). The brain 

regions affected during AD vary considerably, but typically include higher-

order association visual areas such as the IT cortex and the hippocampus 

(Hof et al., 1997, von Gunten et al., 2006). This idea is discussed further, in 

the context of future research directions, in Chapter 5 (Section 5.2.2).  

 

1.6 Crowdsourcing Platforms 

We have discussed the large number of binary and ternary textures available 

for study (Maddess et al., 2004, Maddess et al., 2007, Victor and Conte, 

2012). An efficient way of exploring the properties of these textures is to use 

a crowdsourcing service to carry out remote visual psychometric experiments 

(Paolacci et al., 2010). Crowdsourcing websites coordinate the supply and 

demand of tasks that require human input.  In Chapter 3 of this thesis, we will 

validate the use of crowdsourcing platforms for such experiments. In Chapter 

4, crowdsourcing will be used to carry out a large study using ternary 

textures.  
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Launched in 2005, Amazon Mechanical Turk (mTurk) has developed into the 

largest crowdsourcing platform (see (Mason and Suri, 2012) and (Paolacci et 

al., 2010) for reviews on using mTurk for conducting experiments). It now 

has in excess of 200,000 Workers registered from over 100 countries (Ross 

et al., 2010, Pontin, 2007). MTurk provides the elements required to conduct 

research studies: a large, persistent pool of research subjects, an integrated 

payment system, a streamlined process for study design, recruitment, and 

data collection (Paolacci et al., 2010). Therefore, mTurk has developed into a 

labour market for tasks which vary from surveys and language translations, 

to psychometric experiments (Mason and Suri, 2012).  

Anyone with internet access can register to use mTurk and as a Requester 

or a Worker. Requesters create Human Intelligence Tasks (HITs). HITs 

expire after a predefined time and/or when the available pool has been 

exhausted. Workers are presented with a list of HITs, which they can browse 

and complete. Completed HITs are reviewed by the Requester and accepted 

or rejected. Accepted HITs trigger payment to be transferred from the 

Requester to the Worker’s account. Amazon charges Requesters 10% of the 

total pay issued (minimum $0.005 USD per HIT) (Mason and Suri, 2012). At 

the time of writing, the number of active HITs on mTurk was 403,336 (AWS, 

2014).   

MTurk has several advantages over traditional methods of subject 

recruitment and study implementation. It provides access a large, 

established workforce, which facilitates rapid recruiting with very little effort 

(Ross et al., 2010, Paolacci et al., 2010). The service is available every day 

of the year and subject availability appears to remain quite stable over time, 
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with minor seasonal fluctuations (Ipeirotis, 2010). Its established technical 

infrastructure allows studies to be developed relatively quickly and easily 

(Mason and Suri, 2012). It also includes an integrated payment system, 

which eliminates third-party services, such as PayPal, that have been linked 

to lower response rates (Goritz et al., 2008). It allows for pre-screening and 

can also incorporate quality control measures, such as catch trials (easy 

questions which can be used to gauge subject attentiveness) (Paolacci et al., 

2010, Kittur et al., 2008). Oppenheimer et al. have also experimented with 

ways of checking that Workers are following instructions and remaining 

engaged (Oppenheimer et al., 2009).  

There have been reports of Workers using programs (bots) to automatically 

complete HITs, although this appears to be rare (McCreadie et al., 2010). 

Nonetheless, it is important to validate Worker performance. To that end, 

mTurk has a built-in reputation system so Requesters can block Workers 

whose rejection rate exceeds a given threshold (Paolacci et al., 2010, 

McCreadie et al., 2010).  Qualification tasks may also be used to enforce 

practice trials and careful reading of experimental procedures (Heer et al., 

2010). 

The majority of mTurk Workers are based in the USA, although there is 

considerable international diversity; the number of Workers in India in 

particular is increasing (Ross et al., 2010, Ipeirotis, 2010). The requirement 

for an Internet connection and English language proficiency restricts the 

majority of mTurk Workers to highly industrialized societies (Ross et al., 

2010). MTurk Workers are highly educated, with 57% being educated to 

Bachelor’s degree level or above; a slight majority are female (55%) and 



Chapter 1: General Introduction 

93 
 

aged 18-30 years (62%) (Ross et al., 2010). MTurk Workers are slightly 

more demographically diverse than standard Internet samples and 

significantly more diverse than US college samples (Buhrmester et al., 2011, 

Gosling et al., 2004). Therefore, mTurk allows researchers to access 

subjects that would be difficult to access by other means (Paolacci et al., 

2010). 

One of the advantages offered by crowdsourcing platforms such as mTurk is 

its low cost. One study found that Workers have a reservation wage (the 

minimum pay rate for which they would complete a HIT) of $1.38 USD per 

hour (Ipeirotis, 2010, Mason and Suri, 2012, Buhrmester et al., 2011). 

Compensation rates appear to have less effect on data quality than on the 

rate of data collection (Buhrmester et al., 2011, Paolacci et al., 2010, Mason 

and Watts, 2009). This is consistent with the idea that Workers are not 

primarily financially motivated, but also derive secondary benefits from 

mTurk, such as entertainment and a sense of being productive (Buhrmester 

et al., 2011, Ipeirotis, 2010, Paolacci et al., 2010, Ross et al., 2010). In 

addition to cost savings and reduced recruiting effort, crowdsourcing can 

scale to levels which would be prohibitive in a laboratory setting. 

Given the low levels of compensation, it is interesting to consider what 

motivates mTurk Workers. The number of Workers that rely on mTurk for 

their primary income is quite low: 12% of US and 27% of Indian Workers 

(Ipeirotis, 2010). Nonetheless, only 12% of US and 10% of Indian Workers 

indicated that the money they derive from mTurk was "irrelevant" (Ross et 

al., 2010). Similarly, Paolacci et al. reported that although only 13.8% of the 

US Workers derived their primary income from mTurk, 61.4% reported that 
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earning additional money was an important motivating force (Paolacci et al., 

2010).  

Many Workers also use mTurk for entertainment (40.7%) and “killing time” 

(32.3%) (Ipeirotis, 2010, Paolacci et al., 2010). Buhrmester et al. also 

reported that Workers used mTurk  because they found the tasks enjoyable 

(Buhrmester et al., 2011). The majority of US Workers (69%) reported that 

they thought of mTurk as a productive way to spend free time and make 

some extra money (Ipeirotis, 2010, Paolacci et al., 2010). This suggests that 

mTurk Workers may produce good quality data, despite receiving relatively 

low wages, as financial gain is not their sole motivation (Buhrmester et al., 

2011, Ipeirotis, 2010, Paolacci et al., 2010, Ross et al., 2010). In this context, 

Crump has suggested that tasks which have an entertainment component 

may be more successful at recruiting Workers (Crump et al., 2013).  

Several authors have suggested that, on ethical grounds, the pay of mTurk 

Workers should be comparable to that of laboratory subjects (Mason and 

Suri, 2012, Crump et al., 2013). However, because of the entertainment 

value derived from mTurk (Paolacci et al., 2010, Buhrmester et al., 2011, 

Ipeirotis, 2010), and the low numbers of Workers that rely on mTurk for their 

primary income (Ross et al., 2010, Paolacci et al., 2010, Ipeirotis, 2010), that 

case is not entirely clear. 

An obvious concern with a novel platform such as mTurk is whether the data 

produced is of high quality. Workers are unsupervised and therefore may be 

less attentive than supervised subjects in a laboratory setting (Oppenheimer 

et al., 2009). The anonymity afforded to Workers may increase deceptive 
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responding (Skitka and Sargis, 2006) and rates of non-completion (Crump et 

al., 2013). Some financially motivated Workers may be more concerned with 

completing HITs rapidly than by the quality of their work (Mason and Suri, 

2012). Therefore, it is important to consider how compensation levels affect 

Worker behaviour. 

HIT participation rates are affected by the level of compensation and how 

long the HIT takes to complete (Buhrmester et al., 2011). Buhrmester et al. 

offered $0.02 USD for a 30 minute task, but still accumulated 25 completed 

HITs within 5 hours of posting. When the compensation was increased to 

$0.50 USD, they obtained the same number of completed HITs in less than 2 

hours of posting (Buhrmester et al., 2011). 

In a second study, Buhrmester et al. posted a set of personality 

questionnaires at three levels of compensation ($0.02, $0.10, and $0.50 

USD). The alpha reliabilities for the data collected were within one hundredth 

of a point across all three compensation levels (Buhrmester et al., 2011). 

Mason et al. observed a similar relationship (Mason and Watts, 2009). They 

altered the compensation levels of two mTurk tasks, whilst simultaneously 

measuring the HIT participation rate and the data quality. As the 

compensation level increased (from $0.01 to $0.10 USD), so did the number 

of HITs completed; however, there was no difference in the data quality 

(Mason and Watts, 2009). Taken together, these findings suggest that, even 

at the lowest levels, compensation has less effect on data quality than the 

rate of data collection (Buhrmester et al., 2011, Paolacci et al., 2010, Mason 

and Watts, 2009). This may be explained by Workers deriving secondary 
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benefits from participating in mTurk studies (Buhrmester et al., 2011, 

Ipeirotis, 2010, Paolacci et al., 2010, Ross et al., 2010). 

With regard to data quality, several studies have carried out replications of 

laboratory studies using mTurk. Paolacci et al. replicated a series of classic 

judgment and decision-making experiments on mTurk at a cost of just $1.71 

USD per hour per subject. Quantitatively, there were only very minor 

differences between the mTurk and laboratory data sets (Paolacci et al., 

2010). Similarly, Horton et al. and Crump et al. replicated some classic 

behavioural psychology experiments using mTurk, including the Prisoners’ 

Dilemma, and found it to be congruent with previously published laboratory 

data (Horton et al., 2011, Crump et al., 2013). In the latter study, it is 

interesting to note that the introduction of instructional checks had a greater 

effect on data quality than increasing the level of compensation (Crump et 

al., 2013).  

At the time of writing, only three studies have used mTurk to administer 

visual psychometric studies (Heer et al., 2010, Cole et al., 2009, Freeman et 

al., 2013). Cole et al. recruited 550 mTurk Workers to evaluate three-

dimensional line drawings and indicate surface normals. They gathered 

275,000 observations and used them to rate rendering techniques. However, 

the data gathered was not compared to supervised laboratory data and 

collection statistics were not reported (Cole et al., 2009). Heer et al. (Heer et 

al., 2010) carried out a series of graphical perception experiments, including 

a replication of a laboratory alpha contrast experiment (Stone and Bartram, 

2008). Freeman et al. used mTurk to evaluate the discrimination of natural 

versus synthetic textures (Freeman et al., 2013). They gathered over "300 
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hours of behavioural data from thousands of human observers" (exact 

numbers were not reported). Each Worker was paid $0.40 USD for ~5 

minutes of work ($4.80 USD per hour). Neither demographic data nor 

platform data were reported, and the authors did not report using catch trials 

or qualification tasks (Freeman et al., 2013). In this context, there is a clear 

need for studies which investigate the suitability of mTurk for performing 

visual psychometric testing. 

1.7 Thesis Structure 

We will now briefly review the structure of this thesis. Note that each Chapter 

has been written to be self-contained. Therefore, some introductory material 

appears in several Chapters and/or in the General Introduction.   

  

1.7.1 Chapter 2 

Humans use a number of neurophysiological mechanisms to capture visually 

salient higher order structure. The Maddess group has previously provided 

evidence that the number of independent mechanisms is less than 10 (Taylor 

et al., 2008, Barbosa et al., 2013), and is perhaps as small as 3 to 4 

(Maddess and Nagai, 2001, Maddess et al., 2007, Seamons et al., 2015). 

One statistically well principled method to infer the number and form of the 

underlying independent mechanisms is to use Factor analysis of human 

performance functions; performance functions can be derived from many 

individuals, or many repeats from single individuals (Rosli et al., 2009, 

Maddess and Kulikowski, 1999, Sekuler et al., 1984, Simpson and 

McFadden, 2005). 
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In Chapter 2, we evaluate the underlying mechanisms of texture 

discrimination. We describe binary isotrigon texture discrimination 

experiments using 10 novel isotrigon textures (VnL2, Figure 15) and 17 

standard V3L2 isotrigon textures. After calculating performance functions for 

each subject (probability correct across the different textures) and their d-

primes, two forms of Factor analysis are performed based on rotated 

principal components and maximum likelihood estimates (Reyment, 1996, 

Norris and Lecavalier, 2010).  

We then analyse the number of neurological mechanisms which govern the 

detection of higher-order image structure in two ways: using a Scree plot and 

by analysing communalities (Cattell, 1966, Hayton et al., 2004, DeVellis, 

2012, Zwick and Velicer, 1986). Communalities indicate the proportion of 

variance accounted for within the data for each texture for an N-factor model. 

The possible nature of the underlying mechanisms of texture perception are 

discussed (Maddess and Nagai, 2001, Maddess et al., 2007, Seamons et al., 

2015).  

 

1.7.2 Chapter 3 

In Chapter 3, we continue our exploration of the mechanisms which underpin 

higher-order texture discrimination using a complementary approach to that 

used in Chapter 2. We describe the use of the crowdsourcing platform, 

Amazon Mechanical Turk (mTurk), to design, test, and implement a binary 

isotrigon texture discrimination task using a large number of naïve subjects. 

Due to perceived technical limitations, very few visual psychometric studies 
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have utilised mTurk (Heer et al., 2010, Cole et al., 2009, Freeman et al., 

2013) so an important secondary aim of this chapter is to evaluate its 

suitability for such studies.  

We begin by describing the design and development of the mTurk isotrigon 

texture discrimination HIT. The HIT utilizes a four-alternative forced choice 

task testing modality, developed by Victor et al. (Victor et al., 2013). This 

protocol is intended to provide a more complex and naturalistic stimuli than 

those traditionally used in visual perception experiments based on gratings 

(Victor et al., 2013).  

We discuss initial laboratory testing of the HIT using 6 different platforms 

(270 HITs) and establish whether it is fit for purpose. We evaluate the effects 

of variations between platforms, using correlational analysis and coefficients 

of repeatability (Bland and Altman, 1986, Bland and Altman, 1999, Bland, 

2000, Vaz et al., 2013).  

After testing and validation, we use this HIT to gather crowdsourced data 

from over one hundred naïve subjects. The resulting Live data is then 

compared to 2 laboratory data sets using correlational analysis, coefficients 

of repeatability and Factor analysis. The similarities and differences between 

the Live and the laboratory data sets are discussed in detail and the potential 

of mTurk for carrying out visual psychometric studies is reviewed. 

Recommendations are also made for future mTurk studies, including the use 

of safeguards such as catch trials and qualification tasks. This chapter lays 

the foundations for a second mTurk study, as described in Chapter 4.  
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1.7.3 Chapter 4 

A large number of multi-level textures have been discovered both using a 

deterministic method (Maddess et al., 2007) and a modified stochastic 

method, based on that described for binary textures (Victor and Conte, 

2012). Chapter 4 begins by reviewing the origins and properties of these 

ternary textures. The relationship between the deterministic and stochastic 

cohorts is examined using histograms of primitives. Histograms of primitives 

uniquely identify a texture type based on its constituent unique texture 

subregions (Maddess et al., 2007).  

The full range of ternary textures is larger than that of the binary textures, 

even taking into the account redundancy between deterministic and 

stochastics ensembles (Maddess et al., 2007, Victor et al., 2013, Victor and 

Conte, 2012). Therefore, crowdsourcing is a good way to evaluate human 

discrimination performance for a subset of the possible ternary textures. We 

discuss the development of a ternary texture discrimination HIT, based on 

the binary HIT previously described in Chapter 3, its testing and vallidation.  

The trico planes allow what are defined on three sensory dimensions to be 

displayed coherently in two dimensions. The objective of this study is to 

determine which dimensions of the trico plane are independently processed. 

As noted by Victor, an advantage of the trico plane is that changes in all 

directions are equally detectable to the ideal observer (Victor and Conte, 

2012). However, the informational resources of the human visual system are 

constrained (Victor and Conte, 2012, Franz and Schölkopf, 2005, Barlow, 

2001, Barlow, 1963). In this chapter, we investigate whether discrimination 
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performance varies along certain rays of the trico planes. We then consider 

what such variations tell us about the discrimination mechanisms involved. In 

this chapter, particular emphasis will be placed on what makes the ternary 

textures unique from their binary counterparts - the grey component. 

 

1.7.4 Summary and Future Directions 

In the final chapter, we will consider future research directions that follow 

naturally from the findings outlined in this thesis. Four such research 

directions will be considered: a study of material perception using 3D stimuli 

derived from binary isotrigon textures; a study utilizing isotrigon 

discrimination as a clinical diagnostic aid in neurological disease; an 

investigation of 3D illusions in ternary textures; and the application of the 

ternary texture testing modality to convolutional neural networks. 
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Chapter 2: A Lower Bound on the Number of Mechanisms for 

discriminating Fourth- and Higher-order Spatial Correlations  

2.1 Abstract 

Research on single striate cortical neurons has often concentrated on their 

responses to stimuli defined by two-point correlations. Texture discrimination 

studies using a relatively small palette of isotrigon textures have indicated 

that humans are sensitive to third- and higher-order spatial correlations. 

To further evaluate the underlying mechanisms of texture discrimination, 

subjects discriminated random binary noise patterns from ten new isotrigon 

texture types.  

Factor analysis revealed that as few as three mechanisms may govern the 

detection of fourth- and higher-order image structure. This supports the 

findings of previous studies using different isotrigon textures.  

The computation of higher-order correlations by the brain is neuro-

physiologically plausible. The mechanisms identified in this study may 

represent some short range nonlinear combination of recursive and/or 

rectifying processes.  

 

2.2 Introduction 

Natural images contain large amounts of structural information characterised 

by higher-order spatial correlations (Franz and Schölkopf, 2005). Neurons 

have limited information capacities and energy budgets, so this volume of 



Chapter 2: Mechanisms for Discriminating Higher-order Spatial Correlations 
 

131 
 

information presents a considerable challenge. The human visual system 

must employ mechanisms to filter out redundant or non-salient information, 

but retain that which is behaviourally relevant (Barlow, 2001, Barlow, 1963).  

The orientation and the spatial-frequency tuning of mammalian simple cells 

is suited to a sparse coding system which minimizes informational 

redundancy (Field, 1987). The antagonistic centre-surround receptive field 

architecture exploits the degree of second-order correlation in images to 

remove redundant information. The information removed in such predictive 

encoding processes is related to second-order correlations (Srinivasan et al., 

1982). In this manner, the dynamic range of a neuron can be devoted to 

encoding a small range of non-redundant contrasts, and the visual system 

can encode spatial detail in a manner that minimizes the effects of intrinsic 

noise. Interestingly, the visual system also appears to filter out the 

predictable higher-order structural information from of natural scenes, whilst 

retaining and transmitting that which is not predictable (and therefore 

behaviourally relevant) (Tkacik et al., 2010). End-stopping may be 

particularly important in filtering out redundant higher-order structural 

information (Zetzsche and Nuding, 2005). 

Taken together, these studies highlight the importance of investigating 

higher-order correlations in images and how they are processed. Such 

investigations may also tell us a great deal about cortical functioning (Victor, 

1995, Purpura et al., 1994, Victor and Conte, 1996). Previous research into 

the responses of single striate cortical neurons has concentrated on two-

point correlation properties, as captured by spatial frequency and orientation 

tuning. There has been less research into third- and higher-order 
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correlations, although the visual system is sensitive these relationships in 

natural images (Tkacik et al., 2010).  

Using artificially generated textures we can probe the sensitivities and 

limitations of the human visual system to higher-order correlations. These 

artificial images can have very well controlled statistical properties, and an 

important class of such test images are the original set of isotrigon textures 

(e.g. Figure 1). The word “isotrigon” derives from the fact that the average 

first to third order correlation functions of these textures is zero, as is the 

case for uniform noise. The obvious structure in these textures is therefore 

exclusively due to fourth- and higher-order spatial correlations (Maddess et 

al., 2004, Maddess et al., 2007, Julesz et al., 1978, Victor, 1994, Gilbert, 

1980). Thus, in order to discriminate a particular isotrigon texture from noise, 

it is necessary to identify its complex, higher-order structure; isotrigon 

textures cannot be discriminated based on luminance or other lower-order 

properties. Our discrimination ability seems to be pre-attentive and changes 

little for long presentation times (Taylor et al., 2008). 

 

Figure 1. Examples of the first set of binary isotrigon textures to be 

published (middle and left column). The textures are created by a recursive 
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rule-based process where the rule is operated in concert with glider patterns 

(Victor and Conte, 1991). To begin the process a matrix is set randomly dark 

(-1) or bright (1) with equal probability, each entry representing a pixel. A 3x3 

pixel glider is then moved over the matrix. The gliders are shown in the left 

column, where they are greatly magnified, their pixels actually match those 

of the textures. How the glider affects the underlying pixels is determined by 

the shape of the glider's active regions. Glider pixels marked a,b,c are the 

input pixels, and f is the position of the output pixel. Two rules termed Even 

and Odd were used to create all the textures. The Even and Odd rules are f 

= abc and f = -abc. The glider is moved in steps of one pixel across the 

matrix modifying the entries using the selected rule until the texture is 

complete. Since former outputs become inputs the process is recursive. In 

fact only the first few rows and columns need to be seeded with random -1 

and 1 values and those will determine the outcome, hence these methods 

are said to be deterministic. 

Humans and primates have been shown to be sensitive to the higher-order 

correlations in isotrigon textures in a number of psychophysical (Maddess 

and Nagai, 2001, Maddess et al., 2007, Victor and Conte, 2005), VEP (Victor 

and Conte, 1991), fMRI (Beason-Held et al., 1998a, Beason-Held et al., 

2000), PET (Beason-Held et al., 1998b) studies, and also single cell 

recordings (Purpura et al., 1994). Although they are artificially generated, the 

same structural features that give isotrigon textures visual salience also 

create visual salience in natural images (Tkacik et al., 2010). Therefore, they 

are an ideal tool for evaluating human texture perception. This paper 

investigates a lower bound on how many mechanisms might operate to 

discriminate correlations at fourth and higher orders. 
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Most of the isotrigon textures used to date have been created using a 

recursion procedure in which a combinatorial rule operates on n pixels 

selected by a gliding template, or glider, determines the value of an output 

pixel (Victor and Conte, 1991). For details see the caption of Figure 1. Here 

we introduce the VnL2 isotrigon textures where n can be 4, 5 or 6 and the 

gliders are 4x4 pixels (Fig. 2), the L2 refers to the number of grey levels. This 

is the first paper to investigate these particular isotrigon textures. 

Humans use a number of neurophysiological mechanisms to capture visually 

salient higher order structure. Evidence has been presented that the number 

of independent mechanisms is less than 10 (Taylor et al., 2008), and is more 

likely 3 to 4 (Maddess and Nagai, 2001, Maddess et al., 2007). One 

statistically well principled method is to use Factor analysis of human 

performance functions from many individuals, or many repeats for single 

individuals, to infer the number and form of underlying independent 

mechanisms (Rosli et al., 2009, Maddess and Kulikowski, 1999, Sekuler et 

al., 1984, Simpson and McFadden, 2005). For example, the technique has 

been used to evaluate the mechanisms which underpin contrast sensitivity 

(Peterzell and Teller, 1996, Peterzell et al., 1993). In this study, we apply that 

approach to performance functions for discriminating the new VnL2 textures 

from random textures. Additionally, given that many repeats were involved, 

we also examined learning effects.  
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Figure 2. Examples of the newer VnL2 textures and their gliders. In this 

nomenclature, “V” refers to the number of input variables in the 4x4 pixel 

gliders, and “L” refers to the number of grey levels. The white glider pixels 

are the input pixels. The product of those pixels was then placed at the 
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location of the black glider pixel in the recursion process. The combinatorial 

rule is thus similar to the Even rule of Figure 1. 

 

2.3 Materials and Methods 

Two healthy male subjects (JWS and ALB) were recruited to the study (age 

34 and 22). They had corrected to normal vision. Four other normal subjects 

aged 22, 33, 40, and 56 (one female) also participated to make a third, 

combined data set. In this data set, only early data from JWS and ALB was 

used, to equate the level of experience of the six participants. Informed 

consent was obtained under ANU Human Experimentation Ethics Committee 

protocol 238/04. All research adhered to the tenets of the Declaration of 

Helsinki. 

The VnL2 textures (Fig. 2) were created by the procedure discussed above 

(Victor and Conte, 1991, Maddess and Nagai, 2001). Several hundred VnL2 

texture types were created and screened for being isotrigon by examining 

their mean second- and third-order correlation functions (Maddess et al., 

2004, Maddess et al., 2007). All texture production, stimulus presentation, 

and analysis was done using MatLab (The Mathworks, Natick, MA). 

Ten VnL2 textures were selected because they exhibit a good variety of 

image structure, from quite salient to almost random in appearance. The set 

presumably modulates the human texture mechanisms well. Importantly, no 

texture was so salient that the performance came close to saturating at 

100%: this would remove the variability that Factor analysis is based upon.  



Chapter 2: Mechanisms for Discriminating Higher-order Spatial Correlations 
 

137 
 

The achromatic (colour temperature 6500 K) texture patterns were displayed 

at mean luminance of 395 cd/m2 on a Phillips MGD 403 ultra-high brightness 

monitor at a pixel resolution of 512×420 square pixels, and a refresh rate of 

101 Hz. The ambient illumination was that provided by the monitor in an 

otherwise darkened room. Subjects viewed the patterns binocularly from a 

fixed distance of 46 cm, and head position of the subjects was maintained 

using a chin rest. The angular size of the stimuli is given in Figure 3 and they 

were 11.3 and 22.6 degrees square. 

The experiment was designed as a series of classification tasks in which 

subjects attempted to discriminate between VnL2 textures and random 

binary noise. Two sizes of textures were employed (16x16 and 32x32 pixels), 

providing two difficulty levels. Subjects practiced using the larger size before 

being tested with the smaller stimuli (Fig. 3). The sizes were similar to 

previous studies (Maddess and Nagai, 2001, Victor and Conte, 1991), which 

had shown that the relevant range of salient correlations is less than ± 6 

pixels.  

The stimuli were presented for 297 ms within a smooth temporal window. 

During each texture presentation, the change in contrast of the textures 

incorporated a sigmoidal onset and offset as determined by a Blackman 

function and details of the exact function are given elsewhere (Maddess and 

Nagai, 2001). This was designed to mitigate the nonlinear effects associated 

with abrupt changes in contrast. The textures were at full contrast for 204 ms 

which constitutes pre-attentive viewing (Maddess and Nagai, 2001, Julesz et 

al., 1973). Subjects used a mouse button to indicate whether the texture was 
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random or non-random. To facilitate learning, incorrect choices were 

indicated by a tone (Maddess and Nagai, 2001). 

 

Figure 3. Two sizes of textures were employed (32x32 and 16x16 pixels), 

which thereby provided two difficulty levels. In the first phase of testing, 

subjects made 20 discriminations between 32x32 pixel textures. Then, in the 

second phase, 20 discriminations were made between 16x16 pixel textures. 

The same isotrigon texture was compared with random textures in each of 

these blocks of 40 discriminations. The order of these texture test blocks 

was randomised.  For some subjects, this was repeated several times and in 

later blocks only the smaller textures were shown in further repeats. Each 
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texture pixel was actually 8 display pixels square. The textures were 

displayed on a neutral grey background at the middle luminance of the 

texture checks.  

 

Test sessions proceeded as follows. One of the 10 VnL2 texture types was 

selected at random for testing. Before testing the subject inspected a sheet 

depicting 15 32x32 pixel examples of the texture type to be tested. For 

example, a subject was shown printed examples of texture 048. The subject 

was then presented with a sequence of 20 images: either an example of 

texture 048 or a random binary noise pattern. The subject was asked to 

determine whether the image they were presented was random or textured.  

First twenty 32x32 pixel examples were tested, and then twenty 16x16 pixel 

examples, the larger textures providing some training for the smaller stimuli. 

We will refer of the testing of 40 examples as a test "block". After the last of 

the images was presented, a new texture was selected at random from the 

remaining 9 VnL2s. Once again, printed examples of the texture were 

provided before the trial commenced. This pattern was repeated until blocks 

for all 10 texture types had been tested. In later trials of subjects ABL and 

JWS the 32x32 examples were replaced by 16x16 meaning that 40 

examples were shown in each block. For each texture size the mean 

performance, i.e. probability correct, did calculated providing a performance 

function comprise ten points, one for each texture type. 

Subjects JWS and ABL each completed 16 blocks as described above 

(6,400 individual presentations). The test blocks were not carried out in one 

sitting, but were spread out over a period of days. Data from four other 
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subjects was combined (minimum of 40 presentations each). The data from 

the first few presentations to JWS and ABL were included to provide two 

further data sets from relatively inexperienced subjects for 16x16 and 32x32 

textures. These data sets are labelled All16 and All32. 

A further data set from a previous study was added (Maddess and Nagai, 

2001). The spatial and temporal presentation aspects we identical except 

that the two subjects saw blocks of 12 texture/random alternates for each of 

32x32, 16x16 and 8x8 pixels in block. The 18 V3L2 textures were the same 

as in Figure 1 except that Even and Odd versions of texture called Triangle 

were added. The two subjects each repeated 5 sets of blocks, and were very 

experience viewers (TM and YN). 

We applied Factor analysis to estimate how many neural mechanisms might 

contribute to the performance functions, and their possible weightings for 

each texture type. This exploratory statistical method has been used by 

ourselves (Maddess and Kulikowski, 1999, Rosli et al., 2009) and others 

(Peterzell and Teller, 1996, Peterzell et al., 1993, Sekuler et al., 1984, 

Simpson and McFadden, 2005) to address similar questions. Factor analysis 

exploits covariance across performance functions to provide information 

about any underlying mechanisms. Simply stated, factor models can present 

simplified representations of the many data variables in terms of a small 

number of unobservable variables: in the present case putative texture 

discrimination mechanisms that determine the form of the measured 

performance functions.  The basic equation of a Factor analysis is: 

 

X = S L′ + E    (Eq. 1) 
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…where X is the data matrix, in the present case the rows were observations 

(performance functions) for the 10 textures (columns), one row for each 

repeat or subject depending on the data set. S is the matrix of factor scores, 

i.e. the estimated responses of the mechanisms to each texture over the 

repeats. L is the matrix of factor loadings: the loadings are regression 

weights that are used to combine the factor scores into the performance 

variables (X), here representing the influences of the independent putative 

mechanisms (factors) upon the discrimination of each texture type.  

Importantly, if these loadings are similar for different subjects then the factors 

are more likely to be real. S has size N-repeats x k-factors (see below), and 

L is N-textures x k-factors. The loadings were computed from R, the 

correlation matrix of X by singular value decomposition (SVD), such that R= 

F×D×G providing: 

 

L=F×diag(D)0.5       (Eq. 2) 

 

…and the factor scores were given by: 

 

S = XL(L'L)-1      (Eq. 3) 

 

The columns of F (or G, they are equal in this case) are the eigenvectors of 

R and the elements of the diagonal matrix D are the eigenvalues. The 

eigenvalues provide the proportion of the variance in R provided by each 

eigenvector. Commonly the eigenvalues are sorted and plotted to form a so 

called scree plot. If some small number of factors determines the observed 
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variables then a sharp step can occur in this scree plot the number of 

eigenvalues before the step providing an indication of the number (k) of 

factors to consider, the remaining small components being discarded as 

noise. Note that Eqs. 2 and 3 are computed for the k columns of F and D, 

which provide the k highest eigenvalues to provide a k-factor model, the 

selected eigenvectors being the estimated factors. We will refer to this SVD 

based method as a Principal Components (PC) Factor analysis. The overall 

objective is to find the smallest set of factors that account for the original data 

well. Here this would provide a lower bound on the number of mechanisms 

for discriminating higher order structure. 

One measure of the adequacy of these models is provided by the 

communalities (Reyment and Joreskog, 1996), which are akin to r2-values 

and indicate what proportion of each of the original variables is accounted for 

by the k-factor model, hence the communalities for each of the points in the 

performance functions examined should be uniformly high if the reduced 

factor model accounts well for all the input variables (e.g. Fig. 7D,F). Before 

forming  L (Eq. 2) the loadings were rotated according the Varimax method 

(Reyment and Joreskog, 1996). Through the Varimax method each rotated 

factor is a combination of only the highly interdependent input variables. That 

is the factors tend to be loaded onto (i.e. reflect) the input variables. 

 



Chapter 2: Mechanisms for Discriminating Higher-order Spatial Correlations 
 

143 
 

2.4 Results 

2.4.1 Mean Performance 

The mean performance functions for all subjects are shown in Figure 4. The 

upper two panels show the means for the first and last 10 repeats for JWS 

and ABL.   

 

Figure 4. Mean performance functions for all subjects by texture type (glider 

name). The performance data (probability correct) is presented separately 

according to subjects and the texture size. For All16 (16x16 textures) and 

All32 (32x32 textures) the error bars are SE for N=6 subjects. The JWS and 
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ABL the data use the first and last 10 repeats of 26 and 21 total for 16 x16 

textures. The glider shapes have been added in the bottom panel to improve 

the link between the performance functions and Figure 2. 

For relatively naïve subjects, the performance data is split according to 

texture size (All16 and All32). Although ABL and JWS differ in their 

performance on texture 042, all subjects agree quite well on all other textures 

in terms of the form of their mean performance functions. The performance 

of last 10 repeats of JWS was on average significantly higher than his first 10 

(p = 0.04), but that of ABL was not. 

 

2.4.2 Factor Analysis 

Figure 5 shows scree plots which display the proportion of variance accounted 

for the 10 possible factors from each of the 4 data sets (JWS, ABL, All16 and 

All32).  
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Figure 5. Top: Scree plots showing the proportion of variance accounted for 

in the data sets of Figure 4. The proportions of variance are plotted in order 

of their relative influence, from the largest to smallest. For All16, the scree 

plot shows a step between the 2nd and 3rd factors, possibly indicating the 

presence of 2 underlying mechanisms. First 10: the factors seem to drop off 

linearly rather than exponentially, as they would if they were noise. Last 10: 

ABL seems to show a marked step between the 3rd and 4th factors. JWS 

shows a more linear decline.  

The proportions are plotted in order of their relative influence, from the 

largest to smallest. If the data being evaluated is governed by a small 

number of principal mechanisms, we may see a few large eigenvalues 
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followed by a significant drop-off: the lesser factors exert less influence on 

our data and trail off exponentially into noise. 

There is a drop-off in the accounted proportion of variance after the first two 

factors for All16.  The last 10 visits of ABL also seem to drop off after 3 

factors. This may suggest that two, or perhaps three, independent 

neurophysiological mechanisms govern VnL2 texture discrimination. Better 

evidence for this idea comes from the communalities and the factor loadings. 

 

2.4.3 Communalities 

Figure 6 shows an evaluation of the factor model validity for N factors using 

communalities. The communalities indicate the proportion of variance 

accounted for within the data for each texture. A robust model will provide a 

balanced account of the data for each texture, i.e. communalities of even 

size. Communalities obtained for the largest 5 factors are shown for the All16 

data set, which is the most representative of typical performance among the 

available data sets. It is clear that by 3 to 4 factors, a balanced account of 

the data is obtained.  
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Figure 6. The communalities for five different factor models, 

beginning with a model including only the largest single factor (nf = 1), 

to a model containing the five largest factors (nf = 5) for the All16 data 

set. As the number of factors grows, the profile of bars becomes 

flatter, indicating that the models progressively account for the data in 

a more balanced way. The other three data sets were examined and 

showed many common features, such as texture 042 being less well 

described until 4 or more factors are included. 
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A three factor model is sufficient to describe the majority of the data points 

moderately well. Texture 042 was the least well described by the three factor 

model in Figure 6. It was also the least well described for 2 of the other 3 

data sets (not shown). Across the 4 data sets, the mean (± SD) communality 

for 042 was 0.59 ± 0.17. For the other textures taken together, the three 

factor model provided an overall mean communality of 0.60 ± 0.09, the small 

SD indicating a rather even distribution of communalities. Including 042 in 

the four data sets, the 3-factor models accounted for 0.54 ± 0.19, 0.58 ± 

0.18, 0.63 ± 0.14 and 0.66 ± 0.16 of the variance, for JWS, ABL, ALL16 and 

All32 respectively. 

 

2.4.4 Factor Loadings   

We now address the contributions of the top three factors to the performance 

of subjects on a given texture (Figure 7). This can be done by examining the 

so-called factor loadings, which are like regression weights between the 

factors and performance for each texture. Loadings with large non-zero 

weights indicate the possible form of the putative texture discrimination 

mechanisms. To highlight the differences and similarities between the four 

data sets, we compared their raw correlation coefficients. Given that the 

functions describing the loadings for each factor can be a 10-point function of 

any shape, significant correlation between those functions strongly indicates 

that they are real. 
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Figure 7. An analysis of the contributions of the top three factors to the 

performance of each subject. Factor loadings are regression weights 

between the factors and performance for each texture. These weights can 

be positive or negative, thus weights near 0 contribute little. This allows us to 

evaluate what proportion each factor contributes to performance functions 

(Figure 4) for each texture. The loadings are thus an indication of the relative 

influences of the putative texture discrimination mechanisms. 
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In this analysis, factor loadings FL1 to FL3 of data set 1 (JWS) were 

compared to those of data sets ABL, All16, and All32. A problem with Factor 

analysis is that the ordering of factors used here is based on the variance 

accounted for by each factor in each data set. Thus, a small amount of noise 

might cause the order of factors to be permuted. Furthermore, the sign of the 

factor loadings is arbitrary. Therefore, we used correlation analysis as a way 

of determining which factors were most similar between data sets. In Figure 

7, we grouped the factor loadings from each data set that had the highest 

correlations. As expected, this only permuted a few factors by one step.  

For Figure 7A the best correlation was between JWS and All16 (r=0.84, 

p=0.002). For Figure 7B, the best two correlations were between JWS and 

ABL or All16 (r=0.54 and 0.57; p=0.11 and 0.09). For Figure 7C, the best 

correlation was again between JWS and All16 (r=0.75, p=0.01), and JWS 

and ABL were marginally correlated (r=0.60, p=0.06).     

 

2.4.5 Other textures 

Data from a previous study (Maddess and Nagai, 2001) was added (as 

discussed in Section 2.3). These included the V3L2 textures of Figure 1, but 

the data for the Box-Even texture had low variance so it was dropped from 

the Factor analysis. Figure 8 shows the results for 16x16 pixel data from the 

17 textures. Figure 8A shows a marked drop in the variance explained after 2 

factors, and perhaps a second drop at 4 factors. The communalities for a 

three factor model were quite flat (Fig. 8B) and explained 0.85 ± 0.11 of the 

variance (mean ± SD). A four factor model accounted for 0.94 ± 0.06 of the 

variance for each texture. Results for 32x32 pixel versions were similar. 
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Figure 8. Results from the seventeen V3L2 textures. They are the same 

textures as those of Figure 1 plus 2 more, but not the Box-Even texture (see 

Section 2.3). A) Scree plot showing an abrupt drop between the 2nd and 3rd 

factors. B) the communalities for a 3 factor model account for an average of 

0.85 ± 0.11 of the variance (mean ± SD) for discrimination of each texture. 

On the abscissa labels “+” indicates the Even rule (Figure 1 caption), and “–“ 

the Odd rule; e.g. Cr+ is Cross-Even, and Cr- is Cross-Odd. The order of 

texture types thus follows Figure 1. 
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2.5 Discussion 

Subjects differed somewhat in their ability to detect image structure defined 

by fourth- and higher-order spatial correlations (Figure 4). This study 

supports the possibility that approximately three mechanisms govern higher-

order texture discrimination. This is similar to results reported for other 

isotrigon textures using different methods (Maddess and Nagai, 2001, 

Maddess et al., 2007). Three factor models gave a relatively balanced set of 

communalities for the VnL2 textures (Figure 6), and accounted for about 

85% of the variance for a separate V3L2 17-texture data set from two 

subjects (Figure 8). For those V3L2 textures, the lowest communalities were 

for the Even and Odd El textures, which interestingly are among the least 

visually salient of these textures (Maddess and Nagai, 2001, Tkacik et al., 

2010, Victor and Conte, 1989, Victor and Conte, 1991); that type of fourth-

order correlation rarely occurs in natural scenes (Tkacik et al., 2010). 

Texture 042 was the least well explained by the 3 factor model, having the 

lowest communalities in 3 of the 4 data sets (e.g. Figure 6). As a way of 

possibly addressing this issue, the Minkowski functionals for the textures 

were also investigated. These are three combinations of low to 4th order 

correlations computed for 2x2 pixel blocks of the texture: the Area, Perimeter 

and Euler Number. On a square lattice, there are actually two Euler numbers 

based on 4- and 8-way connectedness, χ4 and χ8. Linear combinations of 

the functionals have been suggested to explain the performance data for 

discrimination of isotrigon textures (Barbosa et al., 2013). In this case, there 

are some notable differences in the Minkowski functional data across the 
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textures used here, but there was nothing that uniquely separated texture 

042 from the others.  

The study of Barbosa et al. (2013) asked if linear combinations of various 

moments of the Minkowski functionals could explain  human performance 

functions for 33 types of isotrigon texture, including 25 of those used here. 

The model with the lowest deviance contained combinations of some of the 

mean, variance, kurtosis and skew of χ4 and χ8. Thus, it is possible that the 

mechanisms for V2LN and VnL3 discrimination are related, but we have no 

evidence for that here. 

An interesting feature of the Minkowski functionals is that they can be 

extended to describe 3D materials composed of two components, either two 

materials (like fibreglass) or a material and voids (like sponge), and in these 

cases they are related to the strength of the materials. Thus, the Minkowski 

functionals may be related to the surface properties of some real surface 

textures and how they inform us about the mechanical properties of the 

materials (Schroder-Turk et al., 2011, Schroder-Turk, 2010). This concept 

will be discussed further in the contest of material perception in Chapter 5 

(Section 5.2). 

In terms of the factor loadings (Figure 7), the consistent correlation between 

JWS and the 6-person All16 data set was encouraging in that they were two 

of the largest data sets, having 26 and 16 repeats respectively, and so were 

the less likely to be affected by noise. Overall the largest correlations 

between the loading functions were for the data sets for presentations of 

16x16 pixel textures. Whether this implies something different is happening 

for the larger 32x32 pixel examples will require more work. Taken together, 
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the fact that a 3 factor model could produce quite evenly distributed 

communalities, and that the resulting factor loadings showed significant 

correlation, indicates that a lower bound of about 3 mechanisms is 

reasonable. Experiments on a larger set of different textures would be 

required to verify this preliminary result. 

It should be noted that PCA analysis extracts orthogonal (uncorrelated) 

components. However, it is possible that the true mechanisms for extracting 

information about 4th and higher order textures may not be orthogonal, and 

therefore the number of mechanisms may be larger. That is, a larger number 

of correlated mechanisms could span the same 3D space. Alternatively our 

10 textures may not probe all the dimensions of the true set of mechanisms.  

The work of Victor et al. (2012) indicates that, for correlations of order 1 to 4, 

computed within 2x2 blocks of pixels, there is possibly a 10-dimensional 

space. This can be reduced to 5-dimensions or fewer if rotational symmetry 

is considered and some of the dimensions show some correlation between 

them (Victor et al., 2013, Victor and Conte, 2012). That set of correlations 

only includes a single measure for 4th order correlations, and larger patch 

sizes, e.g. 3x3 pixels, would be needed to be considered to survey more 

complex 4th order interactions, which could open up a large number of 

possible dimensions.  

Certainly, there is evidence for salient and non-salient higher order 

correlations at such scales in isotrigon and natural textures (Tkacik et al., 

2010). Previous studies have suggested that the range of salient correlations 

is probably less than 6 pixels, and a self-similar analysis occurs for a wide 

range of pixel sizes (Maddess and Nagai, 2001, Victor and Conte, 1989). We 
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have previously provided evidence that the number of independent 

mechanisms is less than 10 (Taylor et al., 2008), and is perhaps as small as 

3 to 4 (Maddess and Nagai, 2001, Maddess et al., 2007) including different 

types of isotrigon textures than those used here. 

Although we address mechanisms sensitive to 4th and higher order 

correlations here, it is worth mentioning that elegant studies of interactions 

between 1st and 4th order (Victor et al., 2005), and 2nd and 3rd order 

correlations (Victor et al., 2013), have been previously reported. These have 

implications for the total number of mechanisms involved in texture 

discrimination more generally. See also related work on the black shot 

mechanism (Chubb et al., 2004). 

Other than JWS, none of the subjects showed significant evidence of 

learning. One possible feature of interest was a change in the scree plot for 

ABL with learning (Figure 5). In a previous study, some subjects markedly 

improved their ability to discriminate V3L2 textures; the increase in 

probability correct for 16x16 textures was 20% for one and 30% for another 

texture type in just 5 repeats (Maddess and Nagai, 2001). Learning has also 

been studied for isotrigon textures that had 3 grey levels (Taylor et al., 2008). 

The effects were moderate however, with discrimination performance 

improving little, either after experience or when the textures were presented 

for several seconds. A recent study by our group, which used a set of 17 

V3L2 textures, found strong evidence of learning effects described by an 

exponential rise with a time constant of about 5 days (Coy et al., 2014). That 

data also showed that a three factor model was reasonable. 
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How might fourth-order correlations be computed by the brain? Maddess and 

Nagai (2001) have proposed cascading two motion computation-like 

mechanisms to yield the quadruple products required for fourth-order 

correlations. Nagai and Maddess have shown that simple models of cortical 

processing, based on recursion, can discriminate isotrigon textures (Nagai et 

al., 2009). They found that oscillator networks, containing as few as 3 

oscillators, were able to emulate human discrimination performance for 53 

binary and ternary isotrigon texture types.  

The formation of recursively applied products is physiologically plausible and 

may occur via dendritic back-propagation (Stuart et al., 1997, Buzsaki and 

Kandel, 1998) or dendritic spiking (Mel, 1993, Stuart et al., 1997, Hausser et 

al., 2000). An unpublished modelling study from our group has also shown 

that dendritic back propagation in one pyramid cell is sufficient to 

discriminate some isotrigon textures from random ones (Taylor, 2013). 

Overall, the mechanisms identified in this study, and previous studies 

(Maddess and Nagai, 2001, Maddess et al., 2007), may represent some 

combination of recursive or rectifying processes.  

In conclusion, in this study a novel set of isotrigon textures (VnL2) were used 

to evaluate the underlying mechanisms of texture discrimination. Subjects 

discriminated random binary noise patterns from the ten isotrigon textures. 

Factor analysis revealed that as few as three mechanisms govern the 

detection of fourth and higher order image structure. The mechanisms 

identified in this study may represent some nonlinear combination of 

recursive and/or rectifying processes computed over relatively short ranges. 
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Chapter 3: Developing and Validating an Isotrigon Texture 

Discrimination Task using Crowdsourcing 

3.1 Abstract 

Humans and primates are visually sensitive to the higher order correlations. 

One way to probe the sensitivity of the human visual system to higher order 

correlations is to use isotrigon textures. Isotrigon textures have the same 

structural features that create visual salience in natural images. Laboratory 

studies using isotrigon textures have found the lower bound of the 

independent neurological mechanisms which underpin texture discrimination 

to be approximately 3. However, these have utilised relatively few subjects.  

We describe the development of a texture discrimination task for use with the 

crowdsourcing platform Amazon Mechanical Turk. We show the method to 

be robust across a variety of platforms. Texture discrimination data was then 

gathered from 121 subjects and compared to two independent laboratory 

data sets. Based on Pearson's correlation and coefficients of repeatability, 

mTurk is capable of producing laboratory quality data. Factor analysis was 

also performed and indicated the presence of 3 to 4 independent texture 

discrimination factors, consistent with previous published studies. This is 

encourging considering the variety of browsers, screen sizes, screen DPIs 

and OS recorded.  

Due to perceived technical limitations, few visual psychometric studies using 

mTurk have been published. This study fulfils three important roles: it is an 

evaluation of crowdsourcing as a platform for visual psychometric research; 
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a guide for developing and testing such studies; and an analysis of binary 

isotrigon texture discrimination using a large number of unsupervised, naïve 

subjects. With the necessary safeguards, mTurk is a promising, and 

underutilized, platform for visual psychometric research at reduced cost and 

increased scale. 

 

3.2 Introduction               

Research into the responses of single striate cortical neurons has 

concentrated on two-point correlation properties, as captured by spatial 

frequency and orientation tuning. Nonetheless, humans and primates are 

sensitive to the higher order spatial correlations; this has been demonstrated 

in a number of psychophysical (Maddess and Nagai, 2001, Maddess et al., 

2007, Victor and Conte, 2005, Seamons et al., 2015), VEP (Victor and 

Conte, 1991), fMRI (Beason-Held et al., 1998a, Beason-Held et al., 2000), 

PET (Beason-Held et al., 1998b) studies, and single cell recordings (Purpura 

et al., 1994, Freeman et al., 2013).  

One way to probe the sensitivity of the human visual system is to use 

artificially generated textures, such as the isotrigon textures. The word 

“isotrigon” derives from the fact that the average first- to third-order 

correlation functions of these textures is zero, as is the case for uniform 

noise. The salient structure in these textures is therefore exclusively due to 

fourth- and higher-order spatial correlations (Maddess et al., 2004, Maddess 

et al., 2007, Caelli et al., 1978, Victor, 1994, Gilbert, 1980). In order to 

discriminate a particular isotrigon texture from noise, it is necessary to 
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identify its complex, higher-order structure. Thus, isotrigon textures cannot 

be discriminated based on luminance or other lower-order properties. 

Although artificially generated, isotrigon textures have the same structural 

features that create visual salience in natural images (Tkacik et al., 2010). 

Therefore, they are an excellent tool for evaluating human texture 

perception. 

Humans use a number of neurological mechanisms to capture visually 

salient higher order structure. Evidence has been presented that the number 

of independent mechanisms is certainly less than 10 (Taylor et al., 2008, 

Barbosa et al., 2013), and is possibly as low as 3 to 4 (Maddess and Nagai, 

2001, Maddess et al., 2007, Seamons et al., 2015). One statistically well 

principled method is to use Factor analysis of human psychometric functions 

from many individuals, or many repeats for single individuals, to infer the 

number and form of underlying independent mechanisms (Rosli et al., 2009, 

Maddess and Kulikowski, 1999, Sekuler et al., 1984, Simpson and 

McFadden, 2005). In this study, we will use both modalities to develop and 

implement an isotrigon texture discrimination task using the crowdsourcing 

platform Amazon Mechanical Turk (mTurk). This is one of the few studies of 

human visual performance using mTurk. 

Launched in 2005, mTurk has developed into the largest crowdsourcing 

platform (see (Paolacci et al., 2010, Mason and Suri, 2012) for reviews on 

using mTurk to conduct experiments). It now has in excess of 200,000 

Workers registered from over 100 countries (Ross et al., 2010, Pontin, 2007). 

Anyone with internet access can register to use mTurk as a Requester or a 

Worker. Requesters create Human Intelligence Tasks (HITs) which Workers 
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are paid to complete (Paolacci et al., 2010, Mason and Suri, 2012). At the 

time of writing the number of active HITs on mTurk was 403,336 (AWS, 

2014).   

MTurk has several advantages over traditional methods of subject 

recruitment and study implementation. It provides access to a large, 

established workforce, which facilitates rapid recruiting (Ross et al., 2010, 

Paolacci et al., 2010) and provides an established technical infrastructure 

with an integrated payment system (Mason and Suri, 2012, Goritz et al., 

2008). Quality control measures, such as catch trials and qualification tasks, 

can be incorporated into HITs (Paolacci et al., 2010, Kittur et al., 2008, Heer 

et al., 2010). MTurk Workers are slightly more demographically diverse than 

standard Internet samples and significantly more diverse than US college 

samples (Buhrmester et al., 2011, Gosling et al., 2004). Therefore, mTurk 

allows researchers to access subjects that would be difficult to access by 

other means.  

One of the greatest advantages offered by mTurk is its low cost. Recent 

research found that Workers have a reservation wage (the minimum pay rate 

for which they would complete a HIT) of $1.38 USD per hour (Ipeirotis, 

2010a, Mason and Suri, 2012, Buhrmester et al., 2011). Compensation rates 

appear to have less effect on data quality than on the rate of data collection 

(Buhrmester et al., 2011, Paolacci et al., 2010, Mason and Watts, 2009). In 

addition to cost savings and reduced recruiting effort, crowdsourcing via 

mTurk can scale to levels which would be prohibitive in a laboratory setting. 

A concern with a novel platform such as mTurk is whether the data derived is 

of high quality. Issues such as demographic variations, subject motivation 
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and subject expertise apply to many mTurk studies and have been well 

studied (Ipeirotis, 2010b, Kittur et al., 2008, Mason and Suri, 2012, Ipeirotis, 

2010a). Several authors have successfully used mTurk to replicate 

laboratory studies (Paolacci et al., 2010, Horton et al., 2011, Crump et al., 

2013). However, there is a lack of published mTurk studies involving visual 

psychometric testing. Therefore, issues specific to visual studies, such 

display resolution and physical size, ambient lighting, subject viewing 

distance and angle, have not been studied extensively in the mTurk context. 

Crowdsourced visual perception experiments lack control over many of these 

conditions. Furthermore, instructional guidelines may not necessarily be 

followed (Heer et al., 2010, Buhrmester et al., 2011, Crump et al., 2013, 

Oppenheimer et al., 2009). It is therefore important to explore how variations 

in working conditions affect the data derived from crowdsourced visual 

studies.  

At the time of writing only three papers were identified which used mTurk to 

administer tasks of a visual perceptual nature (Heer et al., 2010, Cole et al., 

2009, Freeman et al., 2013). Cole et al. recruited 550 mTurk Workers to 

evaluate 3D line drawings and indicate surface normals. They gathered 

275,000 observations and used them to rate rendering techniques. However, 

the data gathered was not compared to supervised laboratory data and 

collection statistics were not reported (Cole et al., 2009). Heer et al. (Heer et 

al., 2010) carried out a series of graphical perception experiments, including 

a replication of laboratory alpha contrast experiment (Stone and Bartram, 

2008).  
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Freeman et al. analysed the single-unit responses of macaque V1 and V2 

neurons to synthetic stimuli which replicated the higher-order structure of 

natural textures (Freeman et al., 2013). The process of generating these 

stimuli is interesting. Starting with photographs of textures taken from nature, 

two sets of stimuli were derived: spectrally matched noise and "naturalistic" 

textures. The latter were synthesised using an optimization process (gradient 

descent) which utilized the image statistics of the original photograph (Portilla 

and Simoncelli, 2000, Heeger and Bergen, 1995). The authors report that the 

resulting naturalistic textures have the same overall orientation and spatial 

frequency content as the original photographs, but lack their higher-order 

statistical dependencies (Freeman et al., 2013). 

Freeman et al. carried out an mTurk study in which perceptual sensitivity 

functions to naturalistic textures were calculated (Freeman et al., 2013). 

They report gathering over "300 hour of behavioural data from thousands of 

human observers" (exact numbers not reported). Each Worker was paid 

$0.40 USD for ~5 minutes of work ($4.80 USD per hour). Neither 

demographic data nor platform data were reported, and the authors did not 

report using catch trials or qualification tasks (Freeman et al., 2013).  

An innovative crowdsourced study was also recently conducted by Mitroff et 

al. (Mitroff et al., 2015). They reported using a mobile App called Airport 

Scanner to gain insights into visual search. Standalone Apps represent a 

viable alternative to crowdsourcing platforms in some instances, but at 

increased technical challenge and with a limited capacity to financially 

compensate users (Mitroff et al., 2015).  



Chapter 3: Developing a Crowdsourced Isotrigon Texture Discrimination Task    
 

169 
 

A previous laboratory study has explored the effect of contrast and pixel size 

on isotrigon discrimination. Maddess et al. carried out texture discrimination 

experiments using 18 isotrigon textures at several contrast levels and pixel 

sizes. They found the average performance to be consistent across all 

conditions (Maddess and Nagai, 2001). The isotrigon texture discrimination 

experiment is thus believed to be resistant to contrast and pixel size 

variations. Nonetheless, all HITs must be carefully tested before they are 

deployed and to allow this Amazon provides a Sandbox environment.  

This study is divided into two parts. Firstly, we will discuss the development 

of the texture discrimination HIT, including a pilot study within the non-public 

Sandbox environment. These experiments used mTurk, but were conducted 

by laboratory members under more controlled conditions and are referred to 

as Lab experiments. We will discuss what was learned from the pilot study, 

how the HIT was adapted and prepared for use on the live mTurk site. 

Secondly, we will analyse the data derived from the live study (referred to as 

Live experiments). Therefore, this paper will fulfil three roles: a guide to 

developing, testing and implementing visual psychometric studies using 

mTurk; an evaluation of mTurk as a platform for visual psychometric 

research; an analysis of texture discrimination using a large number of 

unsupervised, naïve subjects. The mTurk experimental modality developed 

in this Chapter also lays the foundations for a larger series of mTurk 

experiments, using ternary textures, in Chapter 4.  
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3.3 Materials and Methods 

3.3.1 Subjects 

The ethical aspects of this research have been approved by the ANU Human 

Research Ethics Committee under two ANU Human Ethics protocols: one for 

the Lab experiments and one for the Live experiments (2010/194, 2014/237). 

As it was a joint experiment, a mirror protocol for the Live Experiments was 

also approved at Weill Cornell Medical College (0904010359-A003). The 

experiments were conducted in accordance with the Declaration of Helsinki. 

All subjects were instructed to download and read a subject consent form 

before commencing the study. All subjects were instructed that, if they did 

not agree to the terms outlined in the subject consent form, they should not 

participate in the study. Subjects wishing to participate in the study then 

indicated their consent via a button click. We confirm that the named ethics 

committees detailed above specifically approved this study protocol.  

 

3.3.2 Textures 

This study utilized 16 common types of isotrigon textures (Figures 1 and 2) 

(Maddess et al., 2004, Maddess et al., 2007, Caelli et al., 1978, Victor, 1994, 

Gilbert, 1980).  
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Figure 1. The 15 binary isotrigon textures used in the HIT (Box 

Even (Bx+) has been excluded, but is shown in Figure 2). The 

following abbreviations are used throughout the text: Box Odd (Bx-

), B: Cross Even (Cr+), Cross Odd (Cr-), El Even (El+), El Odd (El-

), Foot Even (Ft+), Foot Odd (Ft-), Oblong Even (Ob+), Oblong Odd 

(Ob-), Wolf Even (Wf+), Wolf Odd (Wf-), Wye Even (Wy+), Wye 

Odd (Wy-), Zigzag Even (Zg+), Zigzag Odd (Zg-).  

 

3.3.3 Amazon Mechanical Turk HIT 

An external HIT was developed, which included an isotrigon texture 

discrimination task. Whereas internal HITs are quick and easy to develop, 

use Amazon templates, and are hosted on Amazon servers, they lack the 

advanced features that we required. External HITs are much more flexible 

and may include text, images, movies, and even interactive Flash or Java 

applications (Heer et al., 2010, Paolacci et al., 2010, Mason and Suri, 2012). 
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Amazon S3 was used to host the binary isotrigon texture repository and 

other associated files.  

The HIT itself begins with detailed instructions on how the isotrigon texture 

discrimination task proceeds (a screen capture of the HIT page is shown in 

Appendix 6.1). It includes a slideshow containing examples of the binary 

isotrigon textures for priming subjects. The HIT also includes a monitor 

calibration step which records the DPI of the Worker's screen and dictates 

the required viewing distance that should be used during the task. Workers 

are informed that they should complete the calibration at least once, 

assuming their work platform remains consistent. Other information such as 

the operating system, browser, and anonymous Worker ID are automatically 

captured.  

On commencing the texture discrimination task, Workers are shown an 

image and are required to indicate the location of a distinct band. This can 

either be a background of texture with a foreground band of binary noise (this 

condition is referred to as "Foreground") or vice versa ("Background" 

condition) (Fig. 2). This method was developed by Victor et al. (Victor et al., 

2013) and is intended to provide a more complex and naturalistic stimuli than 

those traditionally used in visual perception experiments using gratings. As in 

natural stimuli, local features have multiple orientations, and multiple 

orientations can occur even at the same location. Moreover, orientation cues 

can arise not only from pairwise spatial correlations, but from higher-order 

ones as well (Victor et al., 2013). There are four possible band positions, 

which were selected at random, as shown in Figure 2, i.e. all experiments 

were four-alternative forced choice. A secondary consequence of using two 
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conditions is it discourages fixation on single corner position, which could 

potentially result in performance of greater than 25% (greater than chance).  

 

Figure 2. The four possible band positions and conditions used in the 

HIT. Top left: right band, foreground condition. Top right: left band, 

foreground condition. Bottom left: top band, background condition. 

Bottom right: bottom band, background condition. All examples are 

shown using the Box Even (Bx+) Texture. 

All texture production and analysis was completed using MatLab (The 

Mathworks, Natick, MA). The isotrigon textures were created using a 

recursion procedure in which a combinatorial rule operated on n pixels 

selected by a gliding template, or glider, determines the value of an output 

pixel (Victor and Conte, 1991, Maddess and Nagai, 2001). During the HIT, 
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the textures were presented in a random order. The 16 isotrigon textures 

chosen had been previously used in supervised laboratory discrimination 

tasks (Maddess and Nagai, 2001, Seamons et al., 2015, Coy, 2014). 

Because the Box Even stimuli are the most salient, they were used as catch 

trials - salient texture discriminations which Workers were expected to pass, 

and therefore could be used to test their attentiveness and detect false 

negatives (Fig. 1 and 2). 

The stimuli were presented for 2,000 ms. Subjects used a mouse to indicate 

the side containing the band and visual feedback was provided as to the 

veracity of their choice. In the initial Lab experiments and the first of two 

large crowdsourced experiments (Live1) the HITs contained a Missed button, 

which allowed Workers to skip a texture if they were distracted during its 

presentation (in which case the missed texture was reinserted at the end of 

the texture queue). The Missed button was removed from the second of two 

large crowdsourced experiments (Live2) to examine the effect of its absence.  

Each HIT utilised a single type of isotrigon texture of those discussed above. 

Each HIT lasted a maximum of 5 minutes and comprised 20 texture 

presentations. The four Box-Even catch trials were also included and 

distributed at random.  

 

3.3.4 Testing on Different Platforms 

In our initial Lab experiments, six different platforms, machines 1 to 6 (M1 to 

M6) were chosen on which to test the HIT. Monitor luminance and other 

physical characteristics of the platforms were measured. Luminance was 
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measured in candelas per m2 (United Detector Technology S370) Luminance 

was measured in an otherwise darkened room and a white area of the 

Amazon Worker Sandbox page was used as the measurement target (AWS, 

2014). An ambient luminance reading was taken from a neutral surface (a 

white wall) adjacent to the work area. In all cases, for a given machine, 

luminance readings were kept consistent for all repetitions. The 

characteristics of the six platforms are summarised in Table 1 (Appendix 

6.2).  

Six copies of the HIT were uploaded to the Amazon Sandbox environment 

for testing, one for each machine (M1-6). One subject (JWGS) completed 3 

repetitions (rep0, rep1, rep2) of 15 HITs on each of the six different machines 

(for a total of 270 HITs). Therefore, each repetition included examples of all 

15 isotrigon texture families on each platform, plus catch trials. Subject 

JWGS had corrected to normal vision and was assumed to be representative 

of the general population, albeit more experienced, in terms of texture 

discrimination. 

Following analysis of that data, a number of minor modifications were made 

to the HIT before proceeding to the Live study. The Live1 and Live2 HITs 

were rolled out in two phases. The second phase incorporated minor 

modifications as detailed below (Section 3.3.6). 

  



Chapter 3: Developing a Crowdsourced Isotrigon Texture Discrimination Task    
 

176 
 

3.3.5 Statistical Techniques 

Factor analysis was performed on the Lab and Live data sets. Factor 

analysis is a family of statistical methods whose goal is to identify the 

underlying relationships between variables within a data set (Reyment, 1996, 

Norris and Lecavalier, 2010). Before Factor analysis, all performance scores 

were transformed to d' units (d-Prime), which accounts for performance 

saturation for the easier textures (Macmillan and Creelman, 1991, Seamons 

et al., 2015); these methods have been published in detail (Seamons et al., 

2015) and discussed in Chapter 2. 

Once factors have been extracted, decisions must be made regarding the 

optimal number of factors to retain. In this study we primarily used the 

proportion of variance for each texture explained for a N-factor model (the 

communalities), which is accurate and reliable (Cattell, 1966, Hayton et al., 

2004, DeVellis, 2012, Zwick and Velicer, 1986). After principal factors have 

been identified, they may be used to compute a reconstructed correlation 

matrix, factor loadings and factor scores (Reyment, 1996).  The factor scores 

are regression weights indicating the contribution of each of the factors to the 

detection of each texture type. The factor loadings are similar weights, but 

indicate the contribution of each factor to each repeat or variables, such as 

the different platforms used. In our recent study using the same methods, but 

different isotrigon textures, we found evidence of 3 to 4 independent 

mechanisms (Seamons et al., 2015). 

A central theme of this study is repeatability or reliability. Lab and Live 

performance data will be evaluated using relative and absolute test-retest 
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reliability measures. These include the relative technique, Pearson’s product 

moment correlation coefficient (r) (Kirk, 2007). However, strong correlation 

does not necessarily mean that there is good agreement between test-retest 

scores. Two measures may be highly correlated, but vary considerably in 

terms of absolute values (Bland and Altman, 1986, Bland and Altman, 1999, 

Bland, 2000, Vaz et al., 2013). Therefore, we will also use the absolute 

reliability measure, coefficient of repeatability (CR). The CR is the value 

below which the absolute differences between two measurements lie within 

0.95 probability (Bland and Altman, 1986, Bland and Altman, 1999, Bland, 

2000, Vaz et al., 2013). Coefficients of reproducibility are commonly derived 

from Bland-Altman plots.  

 

3.3.6 Modifications of the HIT 

As discussed below in Section 3.4.3, the Lab study did not demonstrate a 

significant difference in texture discrimination performance between the 

Foreground and Background conditions (Victor et al., 2013). The 

incorporation of both conditions is believed for increase the difficulty of the 

task and prevent subjects from fixating on border regions (Victor et al., 

2013). Therefore, a decision was made to use the Foreground condition only 

in the Live study phases. Simplifying the experimental protocol may be also 

beneficial when working with naïve subjects.  

A small difference in discrimination performance was observed based on 

band position (Section 3.4.3). Therefore, the HIT was altered so that it 
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always contained equal proportions of each of the 4 band positions. A repeat 

analysis of this effect was performed using the Live1 data.  

The HIT instructions were also shortened and clarified. It is extremely 

important that Workers read and understand the HIT instructions if they are 

to produce high quality data (Crump et al., 2013). To further clarify the user 

interface, a blank holding page was introduced between texture 

presentations (in the original HIT, a binary noise image was used). The 

visual feedback images were changed to a simple tick and cross, again to 

make them more readily understandable. Providing feedback to Workers is a 

factor in maintaining data quality (Dow et al., 2012). 

The catch trials were changed to Box-Odd (Figure 2). Box-Even, as used in 

the Lab study, was considered too easy to encourage attentiveness in 

Workers. Therefore, it was exchanged for the slightly more challenging Box-

Odd texture. The slideshow of texture examples was also enlarged to 

facilitate more effective priming of subjects.  

A bonus payment system was implemented to encourage Workers to 

complete HITs for each of the 15 texture families. The bonus was set at 

$0.80 AUD. Each HIT takes approximately 1 minute to complete. Therefore, 

if the Worker completes all 15 HITs (one for each texture family), the Worker 

will earn $1.50 AUD plus the $0.80 AUD bonus ($2.30 AUD) in 15 minutes. 

This equates to an hourly rate of $9.20 AUD. Although recent research found 

that Workers have a reservation wage of $1.38 USD per hour, we took the 

position on the ethical grounds that the compensation rate should be 

consistent with that of conventional laboratory subjects (Ipeirotis, 2010a, 
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Mason and Suri, 2012). A link to a PDF of a subject consent form was 

implemented, as consistent with the ethical approval obtained. 

An exploit which allowed Workers to rapidly cycle through the HIT was 

identified and removed. Cross platform testing was performed and a number 

of implementation faults removed, including those specific to Mac Firefox 

(32.03) and older versions of Internet Explorer. An image caching strategy 

was also applied to ensure that the times of texture presentation were 

consistent and not limited by network speed.  

 

3.4 Results: Lab Phase 

3.4.1 Lab Testing 

3.4.2 Texture Discrimination Performance by Machine 

The performance data for the machines M1 to M6 (all three replications) was 

grouped and plotted in Figure 3. Based on the combined data set, the 

textures with highest median performance were Oblong-Even (85.7%), 

Zigzag-Even (95.2%), and Box-Odd (100%). The textures with the lowest 

median performance were Wye-Even (50.0%), Foot-Odd (47.6%), and Wye-

Odd (50.0%). The remaining textures had performance scores which 

clustered around of 60-80%. Across all 15 textures, the average median 

performance was 68.4%. 
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Figure 3. Texture discrimination performance (probability correct) by 

machine type. Median performance is shown in red. The blue boxes 

indicate the 25th and 75th percentiles. 

 

To begin to analyse the differences in performance between machines, the 

median performance for machines 1 to 6 were co-plotted (figure not shown). 

The trends of texture discrimination performance across all 6 machines were 

superficially very similar. The largest differences in performance occurred for 

the textures El-Even (M6 > M5 by 23.8%), Wye-Even (M5 > M4 by 23.8%), 

Wolf-Odd (M3 > M5 by 23.8%), Wye-Odd (M2 > M4 by 23.8%). The smallest 

differences in performance occurred for the textures Zigzag-Even (M6 > M5 

by 4.8%) and Box-Odd (M5 > M4 by 4.8%). Across the 15 textures, the mean 
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difference between the highest and lowest performance for any given 

machine was 15.6%. To further evaluate the differences in texture 

discrimination performance between machines, colorrmaps were produced 

(Figure 4).  

 

Figure 4. Colourmaps derived from the M1-M6 data set. A: Colourmap 

showing median texture discrimination performance (probability correct) 

by machine type. Colourmap showing the correlations (B) and the 

coefficients of repeatability (C) from Bland-Altman plots between 

median texture discrimination performances for each machine. 

 

Machines 2, 3 and 4 had the lowest mean performance of the six platforms 

(67.0%, 66.2%, and 68.9% respectively). Machine 2 was a netbook, machine 

3 was a Dell Desktop (768x1024 monitor) and machine 4 was an iPad Mini 
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(1920x1200 monitor). See Table 1 (Appendix 6.2) for detailed information on 

the properties of the six machines tested. The effect of physical screen size 

is most noticeable for textures Cr-, El- and Wy-. These machines represent 

the extremes of screen size evaluated in this study. Log median performance 

data was also analysed (figure not shown). If the difference in performance 

between machines was multiplicative, the log mean performance data would 

exhibit a constant shift. This did not appear to be the case.  

Machines 1, 2 and 3 had the lowest inter-machine correlations of the 6 

platforms tested. Nonetheless, the inter-machine correlations were 

universally high; the mean inter-machine correlation for machine 1 was 

90.1%, machine 2 90.9%, and machine 3, 90.3%. The highest mean inter-

machine correlation was for machine 6 (93.3%). The lowest were between 

machine 3 and machine 1 (85.1%), machine 3 and machine 2 (87.7%), 

machine 4 and machine 1 (89.0%), and between machine 4 and machine 2 

(90.5%). The inter-machine correlations of log median performance were 

also analysed, but were not significant different, suggesting that a 

multiplicative relationship between monitor size and level of performance 

was not present.  

All combinations of machines were analysed using Bland-Altman plots (an 

example Bland-Altman plot is included in Appendix 6.3) and coefficients of 

repeatability were calculated. Across all 6 machines, the coefficients of 

repeatability (CR) were low. The mean CR across all 6 machine types was 

13.1%, which indicates good repeatability. The lowest CR between individual 

machines was 10.1% (machines 1 and 4). The highest was 17.3% (machines 

3 and 6). The machine with the lowest mean CR when paired with the 
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remaining 4 machine types was machine 3 (9.1%); the highest was 12.6% 

for machine 1. Factor analysis was also performed using the Lab data and 

Factor scores were plotted (see Appendix 6.4). This confirmed that machine-

specific features had little impact on binary isotrigon discrimination 

performance. 

  

3.4.3 Analysis of Foreground versus Background Conditions and Band 

Positions 

As shown in Figure 2, two texture conditions were used in the testing phase 

of this study: Foreground and Background. To evaluate the significance of 

these two conditions on texture discrimination performance, the mean 

performance data for the two conditions was separated and the median 

performance and interquartile ranges (IQRs) plotted in Figure 5.  

Across all 15 textures, the mean difference in median performance between 

the Foreground and Background conditions was 0.077. The largest 

differences in median performance between the Foreground and Background 

conditions were observed for textures Cr+ (difference in median performance 

of 0.301) and Zi- (0.221). The smallest differences in median performance 

were observed for textures Bx- (0) and Fo- (0). Apart from the Cr- and Zi+ 

textures, the trends in median performance were very similar between the 

two conditions across the 15 textures. 
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Figure 5. Plots of median texture discrimination performance and 

interquartile range (IQR) according to texture condition (top 2) and band 

position (bottom 2). The texture condition plots show performance data 

from trials using Foreground (Fore) versus Background (Back) 

conditions (as defined in Fig. 2). The band position plots show 

performance data from trials using horizontal (Horz) versus vertical 

(Vert) bands. 

 

The interquartile ranges (IQRs) for the Foreground versus Background 

conditions were also very similar. The mean difference in the Foreground 

and Background variances was 0.064 across all textures. The largest 

differences in variance were observed for textures El- (difference in IQR of 
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0.158) and Wo+ (0.128). The smallest differences in variance were observed 

for textures Bx- (0) and Fo+ (0.011). Based on median performance and 

IQR, the differences between the Foreground and Background conditions are 

not significant.  

The effect of band position was also analysed. A random number of each 

band position condition was presented during each HIT. Therefore, because 

some Workers may receive a disproportionate number of each condition, it 

was important to evaluate their significance. The performance data was 

separated for the four conditions and the median performance for vertical 

and horizontal bands were co-plotted, along with their IQRs (Fig. 5). 

The absolute difference in median performance between the horizontal and 

vertical conditions was 6.57%. The largest differences in median 

performance between the two conditions were observed for textures El-Odd 

(absolute difference in median performance of 19.0%), Foot-Odd (12.4%), 

and Wye-Odd (12.6%). The smallest differences in median performance 

were observed for textures Zigzag-Even and Box-Odd (0%). Based on this 

analysis, there is a small but measurable difference in performance for 

horizontal and vertical bands for certain textures. This will be revisited in our 

analysis of the Live data below (Section 3.5.2). 
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3.5 Results: Live Phase 

3.5.1 Summary Statistics for Live1 and Live2 Data 

Live1 and Live2 both contained 32 assignments. Each assignment was 

composed of 15 texture discrimination tasks (one for each texture family), 

making a total of 960 texture discrimination tasks. Each unique Worker had 

access to a maximum of 15 HITs, one of each texture type. Live1 was 

uploaded to mTurk on 21 Oct 2014 at 11:24:04 EST and Live2 on 7 

November 2014 at 12:43:08 EST. 

Live1 took 48.72 hours to complete. The mean HIT completion rate was 

therefore 0.164 HITs per minute, 9.84 HITs per hour, or 1 HIT every 6 

minutes 5.4 seconds. Live2 took only 20.42 hours to complete. The average 

HIT completion rate was therefore 0.392 HITs per minute, 23.50 HITs per 

hour, or 1 HIT every 2 minutes 56.3 seconds (Fig. 6A). This is approximately 

double the rate observed in Live1. 

Live1 included 69 unique Workers; 18 (26.1%) completed all 15 texture 

families, thereby earning the bonus payment. The mean number of HITs 

completed was 6.96 and the mode was 1 HIT (21 Workers, 30.4%). Live2 

included 58 unique Workers and 15 (25.9%) completed all 15 texture 

families, earning the bonus. The mean number of HITs completed was 8.28 

and the mode was 15 HITs. In Live2, 6 Workers (10.3% of Workers) were 

identified who participated in the original study. Therefore, 17.2% of the HITs 

were completed by Workers who were not strictly naïve subjects. 
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Figure 6. Summary statistics for the Live 1 and Live 2 studies. A: rate at 

which HITs were completed (in hours). B: DPI of the monitors used to 

complete the HITs. C: catch trial failures per HIT. D: catch trial passes by 

texture type (4 passes excluded). E: screen types (monitor size) used to 

complete the HITs. F: browser and operating system combinations used to 

complete the HITs. 
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In Live1, 9 different monitor DPIs were recorded (including "unknown") and in 

Live2, 8 different DPIs. The most significant difference concerned the 

number of Workers that skipped the monitor calibration step. In Live1, 

“unknown” was the most common DPI recorded, with 127 HITs (26.4%). 

After adding an explicit warning to the HIT page, this was reduced to 52 HITs 

(10.8%). In Live2, 72 DPI was the most common with 117 HITs (24.4%) (Fig. 

6B).  

Figure 6D shows catch trial passes per HIT for Live1 and Live2. In Live1, 

394 (82.1%) Workers passed all 4 catch trials. HITs where Workers failed 

2 or more catch trials were rejected on data quality grounds. Therefore, 

90.4% (434) of HITs were of acceptable quality. In Live1, the total cost for 

the HITs was 434 * $0.10 AUD, plus 17 * $0.80 bonus payments (equals 

$57.00 AUD). For further analysis, Live1 HITs were also excluded where 

Workers used the Missed button more than once. Based on the 417 

retained HITs, the cost per HIT was $0.137 AUD, or an estimated hourly 

cost of $8.20 AUD. 

In Live2, 416 (86.7%) Workers passed all 4 catch trials and the number of 

HITs of acceptable quality was 457 (95.2%). Therefore, 13.1% more HITs 

were retained in Live2 versus Live1. The total cost for the HITs was 457 * 

$0.10 AUD, plus 15 * $0.80 bonus payments (equals $57.70 AUD). The cost 

per HIT was $0.126 AUD, which gives an estimated hourly cost of $7.57 

AUD. 

It was important to confirm that the effects of catch trials were not favouring 

particular texture types. Figure 6C shows the catch trial passes by texture 

type (4 catch trial passes not shown due to the difference in magnitude). 
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There is a reasonably even distribution of catch trial failures across textures, 

indicating that the catch trials did not bias any particular texture type.  

Statistics were also gathered on Missed button usage in Live1. In 417 

(86.9%) of the 480 HITs, Workers did not use the Missed button. Due to the 

frequent use of the Missed button by some Workers, the missed button was 

disabled in Live2. 

Additional statistics were gathered on screen type, browser, and operating 

systems used in Live1 and Live2. 16 different screen types were recorded in 

Live1 and 21 in Live2. Note that the pixel dimensions are given in horizontal 

by vertical format. Thus, 800x600 (landscape) and 600x800 (portrait) are 

considered different screen sizes. In both Live1 and Live2, 1366x768 was by 

far the most common monitor type (Fig. 6E). 15 different browser and 

operating system (OS) combinations were recorded in Live1, and 14 in 

Live2. In both studies, Google Chrome 38 on Windows was the most 

common browser/OS combination (Fig.6F). In both studies, the most popular 

OS was Windows (86.9% of HITs in Live1, 93.1% in Live2) (Fig. 6F). 

 

3.5.2 Revisiting the Effect of Screen Size and Band Position 

In the Lab study, it was observed that two monitor types, which represented 

the extremes of monitor size, had an effect on texture discrimination 

performance (Section 3.4.1). The same analysis was carried out for a 

combined Live1 and Live2 data set. The performance data was stratified by 

monitor type. After removing catch trial failures, there was sufficient data to 

analyse the monitor types: 1024x768 (64 HITs), 1252x704 (29 HITs), 
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1280x800 (84 HITs), 1366x768 (322 HITs) and 1920x1080 (86 HITs). The 

median performance data for these screen resolutions was co-plotted (figure 

not shown) and all monitors produced very similar results. Some minor 

variation was observable between monitor types, but this probably results 

from noise; there was no substantial evidence that monitor types produce 

significant variations in performance. Colourmaps were then produced, 

showing the median performance by monitor type and the corresponding 

correlations between monitor types (Fig. 7). 

 

Figure 7. Colourmap derived from the combined Live1 and Live2 data 

sets. A: Colourmap showing median texture discrimination performance 

(probability correct) by monitor resolution. B: Colourmap showing the 

correlations between median texture discrimination performance for 

each monitor size.   
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Figure 7B shows that the performance data for all monitor types are highly 

correlated. One monitor produced slightly lower correlations across the other 

monitor types (1024x768). However, the magnitude of the difference is small 

and the mean correlation for that monitor is still high across all other 

platforms at 84.9%. Therefore, screen resolution does not appear to be a 

significant contributor to the variation in texture discrimination performance 

observed.  

Physical screen sizes were also calculated, using the DPI and screen 

resolution data. The combined Live performance data was then stratified into 

four groups according to physical screen size (diagonal in inches): 10-13 in, 

14-16 in, 17-19 in, and 20-22 in. The median performance scores of the four 

groups were highly correlated (85.8% to 96.2%) (see Appendix 6.5), 

although the smallest displays showed the lowest correlation with the others. 

The Lab testing phase of this study found that band position had a small 

effect on discrimination performance (Section 3.4.3). This analysis was 

repeated using the combined Live1 and Live2 data sets (figure not shown) 

and only a very small difference in performance was observed based on 

band position. The largest differences in median performance between 

horizontal minus vertical conditions were observed for textures Foot-Even 

(4.3%), Cross-Odd (5.9%) and Zigzag-Odd (4.6%). These textures may 

contain directional elements which alter how difficult they are to discriminate 

in certain orientations. However, the effect is small. 
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3.5.3 Live Performance Data versus Two Comparison Data Sets 

The Live data sets were compared to 2 other data sets which used the same 

texture types and were also administered using mTurk. The first comparator 

data set (which we have called M1-M6) was derived from the Lab testing 

phase discussed above. It used the same mTurk HITs, but in the Sandbox 

environment (Fig. 8A).   

 

Figure 8. Texture discrimination performance by data set. Median 

performance is shown in red. Boxes are 25th to 75th percentiles and 

whiskers are the 10th and 90th percentiles, small circles are outliers. A: 
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the M1-M6 data set (machines M1-M6 from the Lab data set 

combined). B: the DC lab data set. C: the Live 1 data set. D: the Live 2 

data set.  

In the M1-M6 data set, one subject (JWGS) completed 3 repetitions (rep0, 

rep1, rep2) of 15 HITs on each of six different platforms (for a total of 270 

HITs). The textures used were the same as those in the Live method. The 

distribution of the median performance scores for this data set is strikingly 

similar to that of the Live mTurk data. A superficial inspection suggests that 

the all data points appear to have been shifted upwards 10-15%, and this is 

perhaps unsurprising given the experience of the subject with the visual 

psychometric task.  

A second comparator data set was provided by Dominique Coy (DC) of the 

Maddess group (Figure 8B) (Coy, 2014). It constitutes texture discrimination 

data from naïve subjects under supervised laboratory conditions and it used 

same Sandbox environment as the M1-M6 data set. In this case, 6 naïve 

subjects were recruited to complete the task under supervised laboratory 

conditions. They included five females and two males whose ages ranged 

from 20 to 24 years. A qualified optometrist completed standard eye 

examinations on all 6 subjects. Each of the subjects completed HITs using 

17 texture families (2 of which are excluded here, to match those used in this 

study), producing 84 HITs for each of the 15 texture families examined.  

To facilitate comparison of the four data sets, the median performance and 

IQRs for each data set were plotted on the same axis (Fig. 9). The trends of 

all four data sets were very similar. The DC and M1-M6 data sets have 
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slightly higher performance scores than the Live data sets and this is 

particularly noticeable for the textures which are more difficult to discriminate. 

The DC data set has the highest IQRs and the most outliers (Fig. 9B). Live1 

and Live2 are very similar in terms of median performance and IQRs.  

 

Figure 9. Median (A) and interquartile range (B) plots by data set.  

The M1-M6 data set has the lowest IQRs across the 15 textures, with a 

mean IQR of 0.12. This was expected as the subject was experienced in the 

testing modality. It is immediately clear how consistently low the IQRs of 

Live1 and Live2 are, with mean IQRs of 0.149 and 0.156 across the 15 
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textures. Indeed, the mTurk Live IQRs are very similar to the M1-M6 IQRs for 

the first 10 textures. The DC data set is significantly more variable, with a 

mean IQR of 0.22. This is most noticeable for textures Cross-Odd and 

Oblong-Odd. 

 

3.5.4 Relative and Absolute Repeatability of Live1 and Live2 Data  

The relative and abolsoute test-retsest reliability for the data sets were 

evaluated. Firstly, Pearson's correlation coefficients (r) were compluted and 

displayed in a colourmap (Fig. 10B) alongside the median performance data 

(Fig. 10A). There is a strong linear correlation between both comparator data 

sets and the Live mTurk data sets. The M1-M6 and DC data sets generally 

produce slightly higher performance scores than the Live data sets. The 

correlation between the M1-M6 data set and Live1 was 91.9% and Live2, 

91.4%. The correlation between the DC data set and Live1 was 93.9% and 

Live2, 92.1%. The correlation between Live1 and Live2 was 97.0%. The 

correlations of log mean performance were also computed, but they were not 

markedly different, suggesting the absence of a multiplicative relationship.  

Bland-Altman plots were also examined (see Appendix 6.3) and the 

coefficient of repeatability (CR) range from X to Y and was smallest between 

Live1 and Live 2 at 9.4% (Bland and Altman, 1986, Bland and Altman, 1999, 

Bland, 2000, Vaz et al., 2013) . The CR for the DC versus the Live1 data was 

14.3% and M1-M6 versus Live1 data was 15.6%. These scores are quite low 

and they suggest that the Live1 mTurk study has accurately reproduced the 

texture discrimination results that derived from supervised laboratory trials. 
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The coefficient of repeatability for the DC versus the Live2 data was 16.2% 

and M1-M6 versus Live2 data was 16.0%. These scores are slightly higher, 

but once again they are low, suggesting that the Live2 mTurk study has 

accurately reproduced the supervised laboratory trials. The CR between 

Live1 and Live2 was only 9.4% and this very low score indicates that the Live 

study itself has a good repeatability.  

 

Figure 10. Colourmap derived from the Live and Lab data sets. A: 

Colourmap showing median texture discrimination performance by data 

set. B: Colourmap showing the correlations between median texture 

discrimination performance for each data set. 
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3.5.5 Factor Analysis of the Combined Lab and Live Datasets 

The Live1, Live2, and both Lab data sets (M1-M6 and DC) were combined 

and the probabilities correct were transformed into d-prime values 

(Macmillan and Creelman, 1991). The adjusted data was then analysed 

using Factor analysis. Two forms of Factor analysis were performed, based 

on varimax rotated principal components (PCs) (Reyment, 1996, Norris and 

Lecavalier, 2010). Details of all these methods are available from our recent 

publication (Seamons et al., 2015) and outlined in Chapter 2. 

Figure 11 shows the resulting PC Scree plot, with the proportion of variance 

accounted for by the possible factors from the pooled data set. The 

proportions are plotted in order of their relative influence, from largest to 

smallest. If the data being evaluated is governed by a small number of 

principal mechanisms, we will see a small number of large eigenvalues, 

followed by a significant drop-off; the lesser factors should exert little 

influence on our data and therefore are expected to trail off exponentially into 

noise (Seamons et al., 2015). There is clear a drop-off in the accounted 

proportion of variance after the first 2 factors. This suggests that, as a first 

estimate, 2 is the lower bound of the independent neurological mechanisms 

that govern texture discrimination. The lesser factors do not fall away as 

markedly as expected.  
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Figure 11: Scree plot showing the proportion of variance accounted for 

by 15 possible factors from the combined Live and Lab data sets 

(Live1, Live2, M1-M6, and DC). The proportions of variance accounted 

for by each factor are plotted in order of their relative influence, from 

largest to smallest.  

Further analysis was carried out to support the presence of the principal 

factors. Figure 12 shows the proportion of variance accounted for by N 

factors for each texture, often called communalities (Reyment, 1996). The 

first graph shows that the per texture proportion of variance explained by the 

single largest factor is poor. As additional factors are added (in descending 

order from the Scree plot of Fig. 12), the reconstruction error declines 

significantly. It can be seen that 3 to 4 factors are required to account for the 

majority of the data evenly across all textures. As subsequent factors are 

added above 4, there was little further improvement in the reconstruction. 
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Figure 12: A sequence of plots showing the proportion of variance 

explained by reconstructing the performance data using nf factors .The 

first graph shows that the proportion of variance explained for each 

texture by just the single largest factor is poor. As additional factors are 

added, the reconstruction error declines significantly. It can clearly be 

seen that 3 to 4 factors are sufficient to account for the majority of the 

proportion of variance in the data. Including additional factors above 

this threshold generates only a minor improvement in the 

reconstruction. 
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3.6 Discussion 

A concern with novel platforms such as mTurk is whether the data derived is 

of the requisite quality. The primary purpose of this study was to address this 

question with regard to a visual psychometric task: discrimination of binary 

isotrigon textures. This was accomplished by comparing two sets of Live 

mTurk data (Live1 and Live2) to data derived from supervised laboratory 

tests (DC and M1-M6). 

The rate of HITs completed in this study was broadly consistent with 

previous findings (Heer et al., 2010, Buhrmester et al., 2011). HIT 

participation rates are affected by the level of compensation and how long 

the HIT takes to complete (Buhrmester et al., 2011). For example, 

Buhrmester et al. offered $0.02 USD for a 30 minute task, but still 

accumulated 25 completed HITs within 5 hours of posting. When the 

compensation was increased to $0.50 USD, they obtained the same number 

of completed HITs in less than 2 hours of posting (Buhrmester et al., 2011). 

For Live2, the average HIT completion rate was approximately double the 

rate observed in Live1. This may be attributed to the Requester reputation 

gained from having previously completed an mTurk study. Live1 was the first 

mTurk study executed on the Requester account, which could have 

dissuaded some Workers from joining the study. 

In terms of catch trial failures, the quality of the data derived was excellent 

(90.4% HITs retained in Live1 and 95.2% in Live2, a 13.1% improvement 

between the studies). This improvement may have resulted from the 

presence of repeat Workers, who completed 17.2% of the total HITs in Live2. 

Considering that the HITs used a slightly more challenging catch trial (Box-
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Odd), the rates of HIT retention based on catch trials are surprising. There 

was an even distribution of catch trial failures across textures, indicating that 

the catch trials did not bias any particular texture type.  

A relatively high proportion of Workers skipped the calibration test for monitor 

DPI. Despite adding a warning to the Live2 study, 52 HITs (10.8%) were 

recorded where Workers did not complete the calibration test at least once. 

There were also problems with Workers not using the latest version of their 

browser and overusing the Missed button in Live1, despite explicit 

instructions otherwise. These findings suggest that clear directions alone are 

not sufficient to guarantee Worker behaviour. In future studies, 

implementation of a qualification task and programmatic enforcement of 

calibration steps (for example, locking the HIT Start button until calibration 

has been completed) should be implemented where possible. That being 

said, the high contrast of the stimuli minimised the effects of display 

differences and the self-similar analysis of texture by the brain minimised the 

effect of display size and resolution (Maddess and Nagai, 2001, Victor et al., 

2005). 

The percentage of HITs rejected is comparable with previous findings and 

may be improved by adding a qualification task in addition to the catch trials. 

For example, Heer et al. repeated one experiment after removing 

qualification tasks and found that over 10% of the responses were unusable 

(Kittur et al., 2008, Heer et al., 2010). After incorporating a qualification task, 

only 0.75% of responses were rejected. Qualification tasks help to ensure 

that Workers understand the task and are suitably engaged (Kittur et al., 

2008, Heer et al., 2010). 
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The Live1 and Live2 data was compared to two Lab data sets from 

supervised laboratory tests (DC and M1-M6) which used similar protocols. 

The distribution of median performance scores for the Live data sets was 

superficially very similar to the Lab results. The performance scores of the 

DC data set were slightly higher than the Live data sets across the textures 

examined. The performance scores of the M1-M6 data set were shifted 

upwards 10-15% with respect to the Live data sets. These findings may be 

attributed to the fact that the subjects were under supervised laboratory 

conditions and more experienced than mTurk subjects (in the case of the DC 

data set, subjects started as naïve subjects, but became more experienced 

with repeated visits). This is consistent with previous findings that the 

discrimination of these textures can be improved by learning, although many 

repeats appear to be required (Maddess and Nagai, 2001, Taylor et al., 

2008, Coy, 2014).  

A strong linear correlation was observed between both Lab data sets and the 

Live mTurk data, based on median performance. The correlations of log 

mean performance were also computed, but they were not markedly different 

suggesting the absence of a multiplicative relationship.  

Absolute repeatability was evaluated using coefficient of repeatability (CR), 

derived from the Bland–Altman plots (see Appendix 6.3). The CRs between 

Lab and Live data sets were low, suggesting that the Live mTurk study had 

accurately reproduced the texture discrimination results that were produced 

by supervised laboratory trials. The CR between Live1 and Live2 was only 

9.4% and this very low score indicates that the Live study itself has a good 

repeatability. Based on these metrics, it appears that mTurk can produce 
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comparable quality data to that derived from laboratory studies in the case of 

an isotrigon texture discrimination task. 

The strong agreement between Live and Lab data sets is interesting 

considering the considerable variations in the browser, physical screen size, 

screen resolution and operating systems observed. During the Lab phase of 

this study, we investigated whether factors such as screen size, pixel size. 

and luminance would affect texture discrimination. In the assessment of 

repeatability, the CRs and Pearson's correlation coefficients were 

consistently low across the machine types tested. Factor scores were also 

plotted from a Factor analysis of the M1-M6 data (see Appendix 6.4). These 

are estimates of the contributions of the four largest factors, showing the 

relative contributions of each factor for each machine. Machine-specific 

features appeared to have little impact on discrimination performance. Small 

differences were observed for two screen sizes (the extremes of those 

tested). This finding was supported by the subsequent analysis of the Live 

data (see Section 3.5.2).  

Factor analysis of the combined Lab and Live datasets suggested that 3 to 4 

is the lower bound of the independent neurological mechanisms that govern 

texture discrimination. This finding is similar to results reported for other 

isotrigon textures using different methods. These studies found that the 

number of independent mechanisms is less than 10 (Taylor et al., 2008, 

Barbosa et al., 2013), and is more likely 3-4 (Maddess and Nagai, 2001, 

Maddess et al., 2007, Coy, 2014, Seamons et al., 2015). In our previous 

study using different isotrigon textures, we found evidence of as few as 3 

independent mechanisms (Seamons et al., 2015). It is notable that there is a 
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strong congruence between Factor analyses performed from multiple 

laboratory-derived samples, and that derived from unsupervised naïve 

subjects using mTurk. In interpreting the results of this Factor analysis, it 

should be noted that the HITs are designed such that each Worker are naïve 

subjects and they have access to a maximum of one discrimination task per 

texture type. Data derived from naïve subjects is expected to be noisier than 

that derived from more experienced subjects, who have been through a 

learning process. Previous studies suggest that learning effects require many 

repeats to develop (Maddess and Nagai, 2001, Taylor et al., 2008, Coy, 

2014). 

The findings of this study with regard to data quality are consistent with 

previous studies where mTurk has been used to replicate laboratory studies 

(Heer et al., 2010, Freeman et al., 2013). For example, Freeman et al. 

observed a 92% correlation between mTurk and laboratory data 15 textures 

tested (Freeman et al., 2013). Paolacci et al. replicated a series of classic 

judgment and decision-making experiments on mTurk at a cost of just $1.71 

USD per hour per subject; quantitatively, there were only very minor 

differences between the mTurk and laboratory data sets (Paolacci et al., 

2010). Similarly, Horton et al. and Crump et al. replicated some classic 

behavioural psychology experiments using mTurk , including the Prisoners’ 

Dilemma, and found agreement with the laboratory data (Horton et al., 2011, 

Crump et al., 2013). 

Considering that mTurk Workers are unsupervised, what accounts for the 

high data quality observed? Although compensation is a relevant issue for 

most Workers, it is not the sole driver; the number of Workers that rely on 
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mTurk for their primary income is quite low: 12% of US and 27% of Indian 

Workers (Ipeirotis, 2010a). Several authors have found that compensation 

rates appear to have less effect on data quality than on the rate of data 

collection (Buhrmester et al., 2011, Paolacci et al., 2010, Mason and Watts, 

2009, Heer et al., 2010). Workers are not believed to be primarily financially 

motivated, but also derive secondary benefits from mTurk, such as 

entertainment and a sense of being productive (Buhrmester et al., 2011, 

Ipeirotis, 2010a, Paolacci et al., 2010, Ross et al., 2010). Indeed, a recent 

study found that the data quality declined in parallel with declining 

meaningfulness of the task (Chandler et al., 2013). It also suggests that 

tasks which are designed to have at least some entertainment value may be 

more successful at recruiting Workers (Crump et al., 2013).  

At the time of writing only three studies were identified which used mTurk to 

administer tasks of a visual perceptual nature (Heer et al., 2010, Cole et al., 

2009, Freeman et al., 2013). The study by Freeman et al. is particularly 

interesting as they correlated mTurk performance with single-unit and fMRI 

data (Freeman et al., 2013). They used synthetic stimuli which replicated the 

higher-order structure of natural textures. Starting with photographs taken 

from nature, two sets of stimuli were derived: spectrally matched noise and 

"naturalistic" textures. The latter were synthesised using an optimization 

process (gradient descent) based on the image statistics of the original 

photograph (Portilla and Simoncelli, 2000, Heeger and Bergen, 1995). The 

authors report that the resulting naturalistic textures had the same overall 

orientation and spatial frequency content as the original photographs, but 

lacked their higher-order statistical dependencies (Freeman et al., 2013). 
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The naturalistic stimuli induced a unique response in V2, but not V1, during 

macaque single-unit and human fMRI recordings (Freeman et al., 2013).  

Freeman et al. then used mTurk to carry out 3 alternative forced choice trials 

where subjects were asked to identify the image which "looks different" from 

the other two. From this data, the authors calculated perceptual sensitivity 

functions. The mTurk perceptual sensitivity functions were significantly 

correlated with single-unit modulation in V2 (r = 0.74, P < 0.001, 16 cells) 

and fMRI modulation in V2 (r = 0.77, P < 0.0001, 2 subjects) (Freeman et al., 

2013). The Freeman et al. study (Freeman et al., 2013) is an elegant 

demonstration of the potential of mTurk in combination with laboratory 

techniques.  

In this study, we have shown that correlation, repeatability and Factor 

analysis support the use of mTurk for visual psychometric research. Indeed, 

mTurk appears capable of producing robust and repeatable results, results 

which are comparable with supervised laboratory studies. Isotrigon 

discrimination has been previously found to be resistant to contrast and pixel 

size variations (Maddess and Nagai, 2001) and it is likely that some 

experimental protocols will be less suited to mTurk. In order to maximise 

data quality derived from mTurk, a number of safeguards should be 

implemented. HITs should have clear instructions, screen calibration 

measures where appropriate, use destructive prior testing to identify bugs 

and exploits, and capture browser, DPI, and OS information. Cross-browser 

testing is particularly important as subtle bugs and performance variations 

are common. Catch trials and/or qualification tasks are crucial for maintaining 

data quality (Heer et al., 2010, Kittur et al., 2008). This is also true during the 
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data analysis phase, where it is essential that the data is sufficiently rich to 

allow sufficient stratification and filtering based on individual Worker 

performance. This study found that warning messages are not sufficient to 

ensure that Workers comply with the HIT instructions and therefore 

measures may be needed to enforce them (such as disabling the HIT until 

calibration has been completed).  

For some studies, HITs may be technically complex to develop and require 

considerable time and effort to validate. This is particularly true of visual 

psychometric HITs, which perhaps offsets some of the gains derived from 

the mTurk system. Nonetheless, as in this study, many technical challenges 

can be addressed and overcome by careful implementation strategies. This 

study has found mTurk to be a promising, and underutilized, platform for 

visual psychometric research which can produce data of comparable quality 

to laboratory samples at greatly reduced cost and greatly increased scale.  
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Chapter 4: Using Crowdsourcing to Identify Maximally 

Informative Directions within a Ternary Texture Feature 

Space  

4.1 Abstract 

This study employs a set of ternary textures with well-defined spatial 

correlation structure of different orders between three grey levels. The 

different textures were constrained in different orders of spatial correlations 

from 1st to 4th order and are referred to as gamma, beta_hv, beta_diag, theta 

and alpha respectively. The textures are stochastically defined allowing 

salience to be independently controlled by adjusting the level of 

decorrelation. The ternary textures can be projected onto so-called trico 

planes; in so-doing, three-level stimuli can be displayed coherently in two 

dimensions. The origin of these planes represents ternary noise, i.e. the 

point of zero salience. Particular directions outward from the origin on the 

plane point to mixtures of the canonical textures.  

To the ideal observer, all textures defined by a given distance out from the 

origin of the trico plane are equally detectable. However, humans are not 

ideal observers; in accordance with the efficient coding hypothesis, the 

informational resources of the human visual system are constrained. The 

objective of this study is to determine which dimensions of the trico planes 

are independently processed.  
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In this study, we examined a subset of the possible ternary texture space. It 

consisted of 13 texture planes (of a possible 66). There were 30 textures 

drawn from each plane, defined by 6 vectors (rays) centred at the origin; 

each ray had 6 predefined, equal levels of decorrelation. The total number of 

textures evaluated was therefore 390. Because of the large number of 

textures available for study, a logical way to gather performance functions 

was to use a crowdsourcing service. We developed a crowdsourcing method 

for evaluating ternary texture discrimination, based on that previously 

described for binary isotrigons (Seamons et al., 2015a). The laboratory 

testing phase was composed of 468 replications. The live (crowdsourced) 

studies were implemented in two phases containing 532 ("Live1") and 427 

unique Workers ("Live2"). In each live study, 32 replications of each texture 

type were tested, making a total of 12,480 per live study. 

Perceptual salience was found to vary for each image statistic examined. We 

observed the textures to have a salience rank order of gamma > beta_hv > 

beta_diag > alpha > theta, which is congruent with that previously reported 

for related binary stochastic textures (Victor and Conte, 2012). The most 

salient statistic (gamma) is defined by the pixel-by-pixel mean and variance. 

Second-order statistics affect the spatial-frequency content of the stimulus 

and are thus readily detectable by linear filters. However, that fourth-order 

correlations (alphas) are more salient than third-order correlations (thetas) is 

less readily explicable. 

We also examined performance along vectors between ternary noise and 

50:50 mixtures of the three canonical textures per trico-plane: white:black, 

black:grey, and white:grey. For the gammas and betas, the white:black and 
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grey-bias directions were consistently the least salient. For the thetas and 

alphas, the black:grey and grey:white directions were consistently the least 

salient. The observed differences reflect the sensitivities and limitations of 

neural processing and are therefore a manifestation of efficient coding.  

We hypothesised that the grey tokens may confer non-salience. Indeed, for 

the gammas and betas, the grey-bias was consistently the second least 

salient. However, this relationship did not hold for thetas or alphas.  

The effect of texture presentation order was also examined. In Live1, 

textures were presented in a pseudo-random order (random steps from 

within a single trico plane). In Live2, the textures were presented in step 

order along each ray, starting with the most salient example. Counter-

intuitively, the order of presentation did not significantly affect texture 

discrimination performance. An analysis of 31 repeat Workers found 

evidence of learning for the beta textures, whereas performance for the 

gammas, thetas and alphas appeared to be already maximal. 

 

4.2 Introduction 

The natural world is rich with texture and the surface of any visible object is 

textured at some scale. We have an intuitive sense of what texture means, 

but it is harder to define in precise terms. According to one definition, texture 

is an organised area phenomenon which can be decomposed into primitives 

with specific spatial distributions (Haralick, 1979). However, textures are 

often highly variable and demonstrate contradictory properties that challenge 

strict definition (Landy and Graham, 2004, Bergen and Adelson, 1991, 
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Adelson, 2001). As Victor points out, “…basic visual judgments are 

fundamentally statistical in nature…” and, in this study, our examination of 

human texture perception will concentrate on image statistics (Victor and 

Conte, 2012). 

When studying human texture perception, the selection of appropriate visual 

stimuli is challenging. The space of signals that the visual system encounters 

is rich and varied; thus, many different image statistics could potentially drive 

visual judgments. Mathematically-convenient stimuli, such as those built from 

white noise, may fail to sample features that are present in natural scenes 

(David and Gallant, 2005). Conversely, naturalistic stimuli encapsulate the 

required image features, but make subsequent analysis intractable as their 

image statistics are complex and interwoven.  

What is required is a statistically well-principled set of stimuli in which 

multiple image statistics can be independently controlled. As we will discuss 

in detail below (Section 4.3.3), the stochastic  ternary textures developed by 

Victor et al. meet this criterion (Victor and Conte, 2012). The number of 

ternary textures available for study is large (Maddess et al., 2007, Victor et 

al., 2013, Victor and Conte, 2012). One sensible way to gather performance 

functions for such a large number of textures is to use a crowdsourcing 

service to carry out distributed visual psychometric experiments (Paolacci et 

al., 2010).  

Crowdsourcing websites coordinate the supply and demand of tasks that 

require human input. Launched in 2005, Amazon Mechanical Turk (mTurk) 

has developed into the largest crowdsourcing platform (Ross et al., 2010, 

Pontin, 2007). MTurk provides the elements required to conduct research 
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studies: a large, persistent pool of research subjects, an integrated payment 

system, a streamlined process for study design, recruitment, and data 

collection (Paolacci et al., 2010). Therefore, mTurk has developed into a 

labour market for tasks, termed Human Intelligence Tasks (HITs), which vary 

from surveys and language translations, to psychometric experiments 

(Mason and Suri, 2012). We have discussed the use of mTurk for visual 

psychometric research in detail in Chapter 1 (Section 1.6) and in Chapter 3 

(Seamons et al., 2015a). 

A concern with a novel platform such as mTurk is whether the data produced 

is of high quality. Due to perceived technical limitations, few visual 

psychometric studies using mTurk have been published (Heer et al., 2010, 

Cole et al., 2009, Freeman et al., 2013, Seamons et al., 2015a). In our 

previous study (Chapter 3), we discussed the development and rigorous 

evaluation of a binary isotrigon discrimination task using crowdsourcing 

(Seamons et al., 2015a). We showed that a binary isotrigon discrimination 

test based on mTurk was robust across a variety of platforms. Texture 

discrimination data was gathered from 121 subjects and compared to two 

independent laboratory data sets. Based on Pearson's correlation and 

coefficients of repeatability, mTurk was shown to be capable of producing 

laboratory quality data. Factor analysis was also performed and indicated a 

lower bound of 3-4 independent texture discrimination factors, consistent 

with previous published studies (Seamons et al., 2015b, Maddess and 

Nagai, 2001, Maddess et al., 2007), in addition to an unpublished study by 

our group (Coy, 2014). This is encourging considering the variety of 

browsers, screen sizes, screen resolutions and operating system recorded 
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(Seamons et al., 2015a). In this study, we will describe the development, 

testing and implementation of a modified version of the HIT previously 

described (Seamons et al., 2015a). 

The objective of this study is to determine which dimensions of the ternary 

texture space are independently processed. The efficient coding hypothesis 

states that neurons have limited energy budgets and information capacities; 

therefore, they should not waste energy nor bandwidth by transmitting 

redundant information (Barlow, 1961, Barlow, 2001). To put it another way, in 

order to maximise available computing resources, neurons should encode as 

much functional information as is structurally and energetically sustainable. 

Reducing informational redundancy potentially increases the amount of 

information that can be transferred through the channels of the visual 

system.  

As we will discuss below in Section 4.3.3, the ternary textures that will be 

used in this study can be visualised as trico axes (Figure 3); within the trico 

axes, to an ideal observer, symmetrical positions in all directions should be 

equally salient (Victor and Conte, 2012). The human visual system, however, 

has limited resources and therefore must employ mechanisms to filter out 

redundant or non-salient information, but retain that which is behaviourally 

relevant (Barlow, 2001, Barlow, 1963). If efficient coding holds, we would 

therefore expect some directions within the trico axes to be more informative 

than others. By using crowdsourcing to gather texture discrimination 

functions from a large number of subjects, we may be able to identify the 

maximally informative directions and gain an insight into the underlying 

mechanisms. In the case of binary isotrigon textures, a similar approach 
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demonstrated that salient textures with higher-order correlations echo 

features that confer salience in natural textures (Tkacik et al., 2010).  

The ternary textures used here differ from their binary counterparts 

previously studied (Seamons et al., 2015a, Seamons et al., 2015b, Maddess 

and Nagai, 2001, Maddess et al., 2004) by the presence of a third token, 

grey. Therefore, a natural question is whether the grey element of ternary 

textures has special properties with regard to texture perception. Indications 

that grey is perceived differently come from perceptual errors, such as 

brightness induction and brightness assimilation, as discussed in Chapter 1 

(Section 1.5.3) (Cornsweet, 1970, White, 1979). Cornsweet championed the 

idea that the simultaneous brightness contrast illusion resulted from 

reciprocal interactions between retinal neurons (Cornsweet, 1970). Although 

appealingly simple, these types of "top-down" approaches to brightness 

perception have now been supplanted by models based on low-level spatial 

filtering mechanisms combined with neural gain control (Dakin and Bex, 

2003, Blakeslee and McCourt, 2008, Blakeslee and McCourt, 2004, 

Blakeslee and McCourt, 2012). 

Several previous studies are directly relevant (Maddess et al., 2007, Victor 

and Conte, 2012, Victor et al., 2013, Maddess et al., 2004). Maddess et al. 

described a set of deterministic ternary textures (Maddess et al., 2004) and 

found that ternary isotrigon discrimination performance can be simulated 

using a bi-quadratic model (Maddess et al., 2007). Victor et al. investigated 

binary stochastic  texture performance in their 2012 paper (Victor and Conte, 

2012) using 6 normal subjects ages 25 to 51, 5 of which were experienced in 

visual psychometric tasks (Victor and Conte, 2012). This work was followed 
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up by Victor et al. in a 2013 study which focused on the beta and theta binary 

stochastic textures (Victor et al., 2013). Victor et al. also completed a study in 

2005 which utilized combinations of binary stochastic textures (such as 

gamma-alphas) (Victor et al., 2005). Where possible, we will make direct 

comparisons with these studies in the Discussion below. 

 

4.3 Materials and Methods 

4.3.1 Methods Overview 

This study can be divided into four phases. A summary of the study methods 

is shown below (Figure 1). In the Lab phase, the ternary HIT was developed 

and tested using the Amazon Mechanical Turk Sandbox environment, i.e. not 

using crowdsourced subjects. The development procedure has been 

described in detail in Chapter 3 and in (Seamons et al., 2015a) and ternary 

texture-specific differences are described in Section 4.3.4 below. Three 

subjects then completed a series of 468 different test HITs in order to 

determine the texture step (decorrelation) levels to be used in the Live study 

phases (described in Section 4.3.5). For each of the 13 textures being 

studied, 6 initial signal levels (steps) and 6 predefined rays were used.  
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Figure 1. Method summary for this study. The study can be divided 

into four phases: Lab, Live1, Live2 and Analysis.  

The Live1 and Live2 phases followed the Lab phase (and are described in 

Section 4.3.6) in which the HIT was posted on mTurk and performance 

functions were gathered from a large number of naïve subjects. In Live1, the 

order of texture presentation was pseudo-random (random within a single 

trico plane). In Live2, textures were presented in step-order along each ray 

(see Sections 4.3.4 and 4.3.6). Based on an early analysis of the Live1 data, 

the step levels were adjusted in Live2 to improve the reliablity of the results.  

Following the Live study phases, a detailed analysis of the performance 

functions was undertaken, i.e. the proablity correct as a function of the signal 
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(decorrealtion) level. This included a comparison of Live1 and Live2 data, 

which informed us about the significance of sequential texture presentation 

(Section 4.3.5); an analysis of repeat Workers and thus learning, which has 

been previously described for binary isotrigon textures (Maddess and Nagai, 

2001, Taylor et al., 2008, Coy, 2014) (Section 4.3.6); and the derivation of 

iso-performance contours (“isocontours”) from the Live2 data (Sections 4.3.7 

and 4.3.8), which is the primary focus of this study. 

 

4.3.2 Subjects 

During the Lab phase, testing was conducted using 3 normal subjects (two 

male, one female). All subjects had normal or corrected-normal visual acuity. 

The subjects had some prior experience of texture discrimination tasks. 

The Live1 and Live2 phases were implemented using the Amazon 

Mechanical Turk crowdsourcing platform. On the HIT page, all subjects were 

explicitly instructed to download and read a subject consent form before 

participating in the study. All subjects were instructed that, if they did not 

agree to the terms outlined in the subject consent form, they should not 

participate. Subjects wishing to participate in the study then indicated their 

consent via a button click. We confirm that the named ethics committees, 

detailed below, specifically approved this study protocol.  

The ethical aspects of this research were approved by the ANU Human 

Research Ethics Committee under two ANU Human Ethics protocols: one for 

the Lab experiments and one for the Live1 and Live2 experiments (2010/194, 

2014/237). As it was a joint experiment, a mirror protocol for the Live1/Live2 
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experiments was also approved at Weill Cornell Medical College 

(0904010359-A003). The experiments were conducted in accordance with 

the Declaration of Helsinki. 

 

4.3.3 Ternary Textures 

A large number of statistically constrained ternary textures have been 

generated (Maddess et al., 2004, Maddess et al., 2007, Taylor et al., 2008). 

The most common methods for creating them include a deterministic method 

(Maddess et al., 2004, Maddess et al., 2007) and a stochastic  method, the 

latter of which has previously been described for the binary textures (Victor 

and Conte, 2012). Whereas the binary textures previously discussed (in 

Chapters 2 and 3) are composed of black and white pixels, the ternary 

textures have three levels: black, white and the mean luminance grey 

(contrasts -1, 1 and 0). The full range of ternary textures is larger than that of 

the binary textures. 

Various types of statistically constrained textures, including isotrigon 

textures, can be produced using the stochastic method, which was 

developed by Victor et al. and has been previously described for binary 

textures (Victor and Conte, 2012). This process is readily adaptable for 

producing ternary textures. The statistics of the stochastic textures can be 

controlled in more sophisticated ways, but they share the same fundamental 

statistics as their deterministic counterparts. This was demonstrated by 

comparing the histograms of primitives (HOPs) of the two texture families 

examined(Maddess, 2015). HOPs count the number of small, unique texture 

samples (primitives, typically 3x3 pixel samples) within a texture example 
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and thereby uniquely identify a texture type (Maddess et al., 2007). The 

deterministic process for producing ternary textures, and its comparison to 

the stochastic process using HOPs, is discussed further in Appendix 6.6.    

Palettes of stochastic ternary textures are created in a space referred to as a 

trico-plane, where the centre location contains ternary noise; the three 

corners of the space are texture archetypes and the remaining space is filled 

with quantitatively derived mixtures (Victor and Conte, 2012). The ternary 

textures are classified according to the number of pixels that are constrained 

within a 2x2 pixel clique. If a single pixel is constrained, the textures are 

termed "gamma". If 2 pixels are constrained, they are termed "beta_hv" or 

"beta_diag" (depending on the orientation of the constrained pixels). If triplets 

of pixels are constrained they are termed "theta" and quadruplets of pixels 

constrained are "alpha" (Victor et al., 2013, Victor and Conte, 2012). These 

pixel constraints are illustrated in Figure 2 below. Texture mixtures can also 

be created (for example, gamma-theta). 

By generating the stimuli in this manner, local image statistics can be 

specified, whilst long-range statistics are maintained as random as possible 

(Victor et al., 2013). Note that of the 10 stimuli types specified in Figure 2, 8 

potentially carry information about orientation (the betas and thetas). The 

gamma and alpha textures are not oriented.  

 



Chapter 4: Using Crowdsourcing to Explore a Ternary Texture Space 
 

 

228 
 

 

Figure 2. Illustration of the pixels constrained within the ternary 

texture templates. From top to bottom, these correspond to 

constraints on first, second, third, and fourth order spatial correlations. 

The specific texture types are labelled.  

 

The stimulus is further specified by different linear combinations of pixels. 

The linear combination defines how the constrained pixels from the template 

interact. For example, alpha_ABCD1111 indicates that pixels ABCD are 

constrained and interact with the combination (rule): modulo 3 of (1*A +1*B + 
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1*C + 1*D). The pixel values are actually {0, 1, 2}, and later are mapped to 

the contrasts {-1, 0, 1}. The total number of texture planes (based on 

combinations of constrained pixels and linear combinations) is 66; the texture 

planes are shown in Table 1 below. In fact, just 33 texture planes are really 

unique given contrast inversion and in this study, we tested a reasonable 

subset of the texture types (13), which are highlighted in yellow; taking into 

consideration rotational and reflectional symmetry, these 13 represent the 

smallest set of clearly distinct textures. 

 

Table 1. The total number of texture planes available for study (66). 

Taking into to consideration rotational and reflectional symmetry, the 

number of clearly distinct textures is 13; it is these that we selected for 

further study and these textures are highlighted in yellow.     
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The simplest stochastic  manipulation is illustrated in Figure 3: controlling the 

statistics of single pixels without reference to any other pixels (gamma) 

(Victor and Conte, 2012), i.e. controlling the first order statistics. Here the 

canonical "textures" are purely black, white and grey images with different 

amounts of ternary noise, i.e. random pixels of equal probability of being 

black white or grey.  

As a way of representing this set of stimuli, the 3 orthogonal colour axes 

(black, grey and white) are projected onto a triangular plane via use of the 

three complex cube root of -1 as the axis directions; this forms the axes of an 

equilateral triangle where the length of each axis vector is 1 (Victor and 

Conte, 2012). We refer to this arrangement as a trico plane and the 3 

principle axes are the trico axes. The trico plane is a contrivance which 

allows what is a three-dimensional image space to be displayed in two-

dimensions. 

We refer to lines in the trico plane that traverse from the centre point to the 

borders as "rays". In order to explore the trico space, we have selected 6 

rays across each trico plane: the 3 principle axes and the perpendicular 

bisectors of the borders. Along each ray that is a trico axis, the frequency of 

one of the three pixel levels (white, grey, or black) increases to the mid-point, 

where it becomes the dominant colouring. At the centre of the trico plane, the 

origin, all three colourings of pixels are equally likely; the central texture is 

therefore uniform ternary noise (Figure 3). 



Chapter 4: Using Crowdsourcing to Explore a Ternary Texture Space 
 

 

231 
 

 

Figure 3. Example trico axis for the gamma ternary textures produced 

using the stochastic  method, as described by Victor et al. for binary 

textures (Victor and Conte, 2012). The 3 orthogonal colour axes 

(black, grey and white) are projected onto a triangular plane. Along 

each outside edge, the frequency of one of the three pixel levels 

increases to the mid-point. The central space contains ternary noise. 

The six rays are shown in red; note that they extend from the origin. 

The captions above each ternary texture indicate the pixel 
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probabilities for black, grey, and white respectively. The titles above 

each texture example give the probabilities of each of the 3 contrasts. 

Along each ray, the number of subdivisions (and hence the number of 

textures), are referred to as "steps" of signal level. In broad terms, the 

distance of the step from the centre of the trico axis affects its salience. To 

put it another way, the step is a measure of decorrelation between 1 and 0, 

with 0 being ternary noise (the central axis position) and 1 indicating no 

decorrelation (positions at the ends of each ray). In this context, it is clear 

that the rays and steps we use in this study, although numerous, are but a 

subset of those possible within the ternary texture space. 

An important feature of the trico axes is that symmetrical changes in all 

directions should be equally detectable to the ideal observer (Victor and 

Conte, 2012). The human visual system, however, has limited resources as 

discussed by other authors in the context information theory (see Chapter 1, 

Section 1.4) (Barlow, 2001, Barlow, 1963). The visual system must therefore 

employ mechanisms to filter out redundant or non-salient information, but 

retain that which is behaviourally relevant (Barlow, 2001, Barlow, 1963). In 

informational terms, we might therefore expect some directions within the 

trico axes to be more informative than others.  

In order to identify a given ternary texture, a specific nomenclature has been 

adopted. For example, "alpha_ABCD1111_B_0.0433" indicates that the 

ternary texture family is "alpha"; the arrangement of the pixels constrained 

are "ABCD1111", where "1111" indicates the linear combination; the pixel 

level (colour-bias) is "B" (black); and the step is 0.0433, which indicates a 
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high level of decorrelation, i.e. the pattern occurs 0.0433 of the distance from 

the centre along the principle axis (ray), pointing to the black-bias corner 

position. 

An alternative way to visualize the ternary textures, which emphasizes the 

effect of the step (decorrelation), is shown in Figure 4. For each texture 

family (in this case gamma) we can display a grid of textures for the tested 

rays; these rays are shown in Figure 3 above. The textures are displayed 

with increasing levels of decorrelation (steps). So, in the example shown in 

Figure 4, 10 levels of decorrelation are displayed, from left (1, no 

decorrelation) to right (0, full decorrelation). This corresponds to gamma 

textures that are derived from starting from an outer position on the trico axis 

and then working in towards the middle in 10 steps, along each ray.  

This method of display reinforces the strength of the stochastic method: by 

adjusting the level of decorrelation, the salience of each ternary texture can 

be independently controlled. When used in psychometric studies, this allows 

for the calculation of performance functions, whilst avoiding performance 

saturation. That is, by adjusting the level decorrelation, we can identify the 

noise levels that yield a criterion probability correct (e.g. a limen of 70%). 

This, and the ability to mix different types of ternary texture, is the primary 

motivation for using the stochastic method. After gathering performance 

functions for the reasonable dimensions within the trico axes, they can be 

used to evaluate perceptual sensitivity within ternary texture space (Victor et 

al., 2005, Victor et al., 2013, Victor and Conte, 2012).  
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Figure 4. Examples of ternary gamma textures, displayed to 

emphasise the effect of decorrelation on texture salience. Six rays are 

represented by the Y axis, with binary noise on the top row, i.e. the 

perpendicular bisector between all white and all black. The rays 

correspond to those shown in Figure 3 above. Each step is 

represented by displacement along the X axis and in this case 10 

equal steps are shown. Step 10 is equivalent to zero decorrelation 

(the leftmost position) and step 1 is equivalent to full decorrelation (the 

rightmost position). Compare the visual effect of increasing 

decorrelation with the ternary noise background. Most obviously 

humans have difficulty discriminating binary noise (the perpendicular 

bisector of black and white dominated textures in Fig. 3) from ternary 

noise. Grey-black and Grey-white textures are far more discriminable 
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from ternary noise. Apparently, the associated luminance cues are 

highly salient compared to the equiluminant black and white noise 

case. 

The ternary textures that were selected for this study are shown in Figures 5 

and 6 below. For each selected texture family, 6 rays were predefined. Along 

each ray, five steps were defined (six in the preliminary Lab experiments), 

where the step size was defined to maximise the signal to noise ratio based 

on Lab phase of testing (see Section 4.4.1). In total, 390 different ternary 

textures were used (13 trico axes, 6 rays on each axis, 5 steps on each ray). 

 

Figure 5. Reduced trico axes which illustrate 5 of the 13 ternary 

texture families used in this study. Note that except for Gamma_A1, 

only the fully correlated textures are shown. In the case of 

Gamma_A1, 10% decorrelated textures are shown to illustrate the 

effect of adding a small amount of ternary noise. The 6 rays are 
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shown as red vectors emanating from the origin. The origin is ternary 

noise, but is not shown. 

 

Figure 6. Reduced trico axes which illustrate the remaining 8 of the 

13 ternary texture families used in this study. Note that only the fully 

correlated textures are shown.  
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4.3.4 Amazon Mechanical Turk HIT 

An external HIT was developed, which included a ternary texture 

discrimination task, based on that previously described for binary isotrigon 

textures (see Chapter 3) (Seamons et al., 2015a). Whereas internal HITs are 

quick and easy to develop using Amazon templates, and are hosted on 

Amazon servers, they lack the advanced features that we required. External 

HITs are more flexible and may include text, images, movies, and Flash or 

Java applications (Heer et al., 2010, Paolacci et al., 2010, Mason and Suri, 

2012). Amazon S3 was used to host the texture repository and other 

associated files. All development and testing of the HIT was performed using 

the Amazon Mechanical Turk Sandbox environment. 

The structure of the HIT was as follows (a screen capture of the HIT page is 

included in Appendix 6.7). In the first instance, Workers were required to 

complete a subject consent form. This was followed by detailed instructions 

on how to conduct the texture discrimination task, along with a slideshow 

containing examples of the ternary textures to be presented. There is a 

strong association between the clarity of the HIT instructions and data quality 

(Crump et al., 2013). 

As with the binary isotrigon HIT previously reported (Seamons et al., 2015a), 

the HIT included a monitor calibration step. This captured the resolution in 

dots per inch (DPI) of the Worker's screen, as well as dictating the viewing 

distance that should be used during the task. Workers were informed that 

they should complete the calibration at least once (and each time their work 

platform changed). Other information, such as the operating system, 
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browser, and Worker ID, were automatically captured for subsequent 

analysis. Some basic demographic information was also recorded including 

gender and age group. 

The compulsory calibration step allowed us to control the effective monitor 

gamma, independently from local settings. Before starting the HIT, Workers 

were asked look at the image below (Figure 7) and pick the grey rectangle in 

the image that was closest to the average brightness of the black and white 

textured surround, i.e. the mid-grey. A noise background was chosen 

because we found that it was highly resistant to spatial aliasing effects 

(Yellott, 1983). The checks of the background were also lightly spatially low-

pass filtered to further reduce its high spatial frequency content. Thus, the 

calibration pattern could be resized over a very broad range without causing 

Moire patterns (that can create false grey levels in the background). 

Checking of the corresponding tick-box caused a Cascading Style Sheets 

(CSS) filter to be applied to the HIT page, which normalised the gamma of 

the Worker's monitor. The calibration step was enforced by locking the HIT 

Start button until this step was completed. Note that the use of CSS filters 

required extensive cross-browser testing as they are not universally 

supported. 
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Figure 7. Gamma calibration task developed for the ternary texture 

HIT. Workers selected the grey rectangle that is closest to the 

average brightness of the black and white surround, i.e. the mid-grey. 

This effectively allowed us to control the relative gamma of the HIT 

presented texture, independently from local monitor settings. In the 

live studies reported below, the minimum gamma recorded was 1.45 

and the maximum was 2.01 (see Section 4.4.2 below). 

Directly above the texture discrimination task, a priming strip was displayed. 

The strip was implemented to change dynamically to illustrate the texture 

family being tested. Each priming strip constituted one ray and 5 examples, 
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corresponding to the 5 steps being tested. The steps were arranged in step 

order, from left to right (as in Figure 4 above). i.e.: the least decorrelated step 

(step 5) is shown in the leftmost position. The specific step being tested is 

highlighted in blue (Figure 8). 

 

 

Figure 8. Examples of priming strips used during the ternary texture 

HIT. The textures in these examples are A: beta_hv_AB12 and B: 

beta_diag_AD11. Textures are displayed in step order (step 5 is 

leftmost). The texture type being tested is highlighted in blue. One 

priming strip occurs per HIT. 

During the texture discrimination task, ternary textures were presented to 

each Worker in a semi-random order. Specifically, each Worker was 

allocated a randomly determined trico plane to work on, from the 13 planes 

being studied. Then, within this trico plane, they were presented with textures 

to discriminate in a random order from within that plane (Lab and Live1) or in 

step order (Live2). Thus, in Live2, the first ternary texture presented was the 

least decorrelated (step 5), followed by steps 4 to 1 in order; upon 

A 

B 
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completion of the ray, the next ray within the same trico plane was selected 

at random from those remaining. This difference between Live1 and Live2 

allowed us to analyse the effect of presentation order on learning; the Live2 

presentation schema might be reasonably expected to promote learning (and 

thus improve performance).  

During the task, Workers were required to identify the position of a band of 

the test texture within a field of ternary noise (the Foreground condition), or 

the opposite, with the texture as the background and a band of noise 

(Background condition). There were four possible band positions, as shown 

in Figure 9. The band positions occurred in equal quantities and were 

presented in random order during the HIT. Thus, all experiments were four-

alternative forced choice texture segregation tasks.  

Subjects were told that the target was equally likely to appear in any one of 

four locations (top, right, bottom, left), and were instructed to maintain central 

fixation, rather than to attempt to scan the stimulus. This method was 

developed by Victor et al. (Victor et al., 2013) and was intended to provide a 

more complex and naturalistic stimuli than those traditionally used in visual 

perception experiments using gratings. As in natural stimuli, local features 

have multiple orientations, and multiple orientations can occur even at the 

same location (Victor et al., 2013). A secondary consequence of using 

Foreground and Background conditions is that it discouraged fixation on a 

single corner position, which could potentially result in performance of 

greater than chance (>25%).  
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Visual feedback for correct and incorrect responses was given during the 

task. Providing feedback to Workers promotes learning and has previously 

been identified as a factor in maintaining data quality (Dow et al., 2012). 

 

Figure 9. The four possible band positions in the ternary HIT. In this 

example, the ternary texture used is a highly salient example of a 

gamma texture (black-bias). The bands and conditions shown are as 

follows. A: right band Foreground. B: left band Background. C: top 

band Foreground. D: bottom band Background. For clarity, the bands 

have been outlined in red (bands were not highlighted during the HITs 

proper). 
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Each HIT was composed of 40 texture presentations. The first 20 had a 

presentation time of 2,000 ms (referred to as the "long" condition); the 

second 20 presentations lasted for 200 ms each ("short" condition). Victor et 

al. used presentation times of 120-160 ms (Victor et al., 2013, Victor and 

Conte, 2012). Previous studies have found texture discrimination of related 

textures to be pre-attentive and changes little for longer presentation times 

(Taylor et al., 2008). An unexpected consequence of the large number of 

texture presentations was that image pre-caching was required on the 

Worker’s device; if textures were instead loaded on demand, presentation 

times would be dependent on network latency. Many tablets, such as iPads, 

have limited memory available for caching and were therefore excluded from 

the study. 

In Lab and Live1 phases, one HIT corresponded to one step (40 texture 

presentations). In Live2, in order to implement sequential presentation, all 5 

steps from one ray were incorporated into a single HIT, and then presented 

in step order; thus, each HIT in Live2 corresponded to 5 steps and 200 

texture presentations. During analysis, Live2 HITs were simply divided into 5 

"HIT-equivalents".  

As with the binary isotrigon task previously reported (Seamons et al., 2015a), 

catch trials were incorporated to encourage Worker attentiveness and allow 

an assessment of data quality. Catch trials and/or qualification tasks have 

been found to be important for maintaining data quality (Heer et al., 2010, 

Kittur et al., 2008). In this study, highly salient examples of the gamma 

(black-bias) texture were used as catch trials. Examples of these textures are 

shown in Figure 9 above.  
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4.3.5 Lab Testing: Weibull Functions 

After the implementation of the ternary HIT, the texture step (decorrelation) 

levels to be used in the Live1 study were determined. Our goal was to 

prevent performance saturation and maximise the signal to noise ratio during 

the Live study phases. If the texture discrimination task was too easy, subject 

performance will saturate. Conversely, if the textures were too difficult, noise 

will dominate performance.  

Under laboratory conditions, 3 normal subjects (two male, one female) 

completed 468 HITs between them: one replication each of 13 texture 

families, 6 rays, and 6 steps, where the initial step levels were approximated. 

Note that 6 steps were used (as opposed to 5 in the Live phases) to improve 

the fitting of performance functions. All subjects had experience of isotrigon 

discrimination tasks and the HIT protocol used in this study.  

The performance data was used to fit Weibull functions to the mean 

performance separately along each ray, using the procedure outlined in 

Victor et al. 2005 and subsequent studies (Victor et al., 2005, Victor et al., 

2013, Victor and Conte, 2012). In order to fit the Weibull function, the initial 

Weibull parameters were produced based on a linear approximation; the 

parameters arising from that prediction were given to an iterative method 

(gradient descent) to achieve the final Weibull fit. Victor et al. previously 

reported Weibull shape parameters (the exponent) in the range 2.2 to 2.6 

(Victor and Conte, 2012). Then, the inverse Weibull function was used to find 

the degree of decorrelation corresponding to a selected limen. 
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The cumulative distribution function of the Weibull distribution is defined as 

follows in Equation 1:  

 

𝐹(𝑥;𝑘, 𝜆) = 1 −  𝑒−(𝜋/𝜆)𝑘            (Eq. 1) 

…for x ≥ 0, and F(x; k; λ) = 0 for x < 0. The shape of the function is 

determined by the free parameters k, the shape (or steepness) parameter 

and λ, the scale (or centring) parameter. Figure 10 shows how various 

values of these free parameters affect the shape of the Weibull function.   

 

Figure 10. Example of how the cumulative distribution of the Weibull 

function varies according to the free parameters k (shape parameter) 

and λ (scale parameter) (Verma et al., 2010). 
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The value of the image statistic that yields performance at some defined 

point between floor and ceiling was then calculated for each texture and 

each ray. The threshold was set to predict a fraction correct (limen) of 0.625. 

Based on these predictions, the steps (decorrelation levels) for the Live1 

ternary textures were established. Effectively, the step levels allow us to 

independently set the difficulty of the texture discrimination task for a given 

ray. After this testing phase, a repository of ternary textures for live testing 

was produced that should yield reasonable performance levels. The textures 

were uploaded to Amazon S3 and linked to the mTurk HIT implementation.  

 

4.3.6 Live1 and Live2 Phases 

Live1 was uploaded to Amazon mTurk on 5 December 2014 at 14:10:53 

EST. In total, 32 HITs of each texture type were uploaded, each based on a 

different random number seed. As discussed above, 13 ternary texture 

families were selected, each with 5 steps (established on the basis of Weibull 

functions in the Lab phase) and 6 rays; this made for a total of 390 HIT 

types. 32 HITs of each type were posted, making a total of 12,480 HITs. 

Live2 was uploaded to mTurk on 3 June 2015 at 14:38:33 EST. In total, 32 

HITs of each texture type were uploaded: again, the same 13 ternary texture 

families were selected, each with 6 rays and 5 steps, established on the 

basis of Weibull functions, but modified based on Live1 results to improve 

Worker performance (discussed below in Section 4.4.5). To allow sequential 

presentation, the 5 steps were combined into a single HIT; that made a total 

of 78 HIT types. 32 HITs of each type were posted, making a total of 2,496 
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HITs. In post processing, each HIT was divided up into 5 HIT-equivalents (1 

for each step), producing the same number of replications as in Live1 

(12,480).  

In Live1, 8 catch trials were randomly distributed throughout the HITs. Thus, 

the short and long presentation times could contain 0-8 catch trials. In Live2, 

the distribution of catch trials was adjusted so that each presentation 

condition contained 4 catch trials. 

The compensation rate for each HIT in Live1 was set at $0.10 AUD. As each 

HIT in Live2 contained 5 steps, this was increased to $0.50 AUD in Live2. 

Based on the high quality data obtained from the binary isotrigon HIT 

previously described (Seamons et al., 2015a), a bonus payment system was 

implemented to encourage Workers to complete HITs for each of the texture 

families. Although recent research found that Workers have a reservation 

wage of $1.38 USD per hour, on ethical grounds the compensation rates 

were made consistent with that of conventional laboratory subjects (Ipeirotis, 

2010a, Mason and Suri, 2012). Consistent with good experimental 

procedure, a feedback website was produced so study participants could 

track the progress of the study. 

 

4.3.7 Isodiscrimination Contours 

After gathering performance functions for the reasonable dimensions within 

the trico axes in the Live phases, this data was used to evaluate perceptual 

salience within the three-dimensional ternary texture space, projected onto 



Chapter 4: Using Crowdsourcing to Explore a Ternary Texture Space 
 

 

248 
 

the trico plane. The procedure for doing this is outlined by Victor et al. (Victor 

et al., 2005, Victor et al., 2013, Victor and Conte, 2012). In the first instance, 

performance functions were fitted to Weibull functions in the process outlined 

in Section 4.3.5. The Weibull function parameters were then used to predict 

the step (decorrelation) level that was predicted to yield some criterion 

performance (termed "ar"). This was taken as the threshold for a given 

fraction correct, in the corresponding direction of the trico plane. This 

analysis is carried out for the Live2 data in Sections 4.4.7 and 4.4.8 below. 

The reciprocal, 1/ar, indicates perceptual sensitivity to changes in the 

direction of a single ray; when plotted in an "isodiscrimination contour" (or 

"isocontour ") this forms a visual representation of perceptual sensitivity for 

each trico plane (Victor and Conte, 2012). An example isocontour is shown 

in Figure 11. The axis of elongation (highest threshold) corresponds to the 

direction in which changes are least salient.  

Where Weibull functions cannot be fitted, due to insufficient discrimination 

performance levels, the observed performance at zero decorrelation may 

instead be plotted; in this case, the axis of elongation corresponds to the 

direction in which changes are most salient. In these cases, performance 

functions were nowhere near saturation. Therefore, we obtained the 

unsaturated performance to a fixed signal level: 1.0. For clarity, these two 

forms of plot are presented and analysed separately (see Section 4.4.8 

below). 
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Figure 11. Example of an isodiscrimination contour for the 

beta_hv_AB11 textures. A: For each ray, the step levels have been 

plotted that yield a predicted performance of 60%. Thus, the axis of 

elongation corresponds to the direction in which changes are least 

salient. B: Corresponding plot of the pixel probabilities for each ray at 

the step levels that predict 60% performance. To assist the reader, the 

corresponding reduced trico plane is shown in C.  

 

A 

B 

C 
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4.4 Results 

4.4.1 Lab Phase: Estimation of Initial step Levels Using Weibull 

Functions  

As described above (in Section 4.3.5), under laboratory conditions 3 normal 

subjects (two male, one female) completed 468 HITs between them using 

comparable platforms. All subjects had experience of isotrigon discrimination 

tasks and the HIT protocol used in this study. Weibull functions were plotted 

and step levels established which could be used to confidently predict 0.625 

performance limen.  

An example of the Weibull functions derived in Lab testing is shown in Figure 

12. After Lab testing, a repository of ternary textures was produced using the 

step levels obtained. The textures were then uploaded to Amazon S3 and 

used in Live1. The actual step levels used in Live1 are summarised in Table 

2 (in Section 4.4.5).   
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Figure 12A. Example Weibull functions derived from Lab testing for 

the beta_hv_AB12 textures. Using functions such as these, the step 

levels, "wcrit" (Weibull function critical value), were identified which 

predicted 0.625 performance. The wcrit values are indicated under 

each Weibull plot. The green dashed line indicates the initial 

prediction to the Weibull fit, given by a linear approximation; the 

parameters arising from that prediction were given to an iterative 

method to achieve the final blue fitted line. B: the corresponding 

reduced trico plane for the beta_hv_AB12 texture. 

 

 

A 

B 



Chapter 4: Using Crowdsourcing to Explore a Ternary Texture Space 
 

 

252 
 

4.4.2 Live1 and Live2: Summary Statistics 

Summary statistics for the Live1 and Live2 studies are shown in Figure 13. 

We will briefly consider some of the most interesting summary stats. Such 

reporting is significant, considering the dearth of published visual 

psychometric mTurk studies.  

The first HIT of Live1 was completed on 5 December 2014 at 22:27:11 EST 

and the last completed on 31 December 2014 at 07:34:38 EST. Therefore, 

the total time to completion was +617.4 hours; that is one HIT per 2.97 

minutes. A slightly reduced rate of HIT completion was observed between 24 

December 2014 07:17:09 and 26 December 2014 06:42:44, presumably due 

to the Christmas holiday period. This is consistent with previous data on 

seasonal fluctuations in the mTurk workforce (Mason and Suri, 2012, 

Ipeirotis, 2010b) (Figure 13A). The maximum HIT completion time was 298.0 

seconds, minimum 76.0 seconds, and mean 169.8. 

The first HIT of Live2 was completed on 3 June 2015 at 14:49:47 EST and 

the last completed on 12 June 2015 at 18:48:50 EST. Therefore, the total 

time to completion was +220.0 hours; after taking into consideration that 

each HIT contained 5 steps, one "HIT-equivalent" was completed every 1.06 

minutes (Figure 13A). The maximum HIT-equivalent completion time was 

179.2 seconds, minimum 62.4 seconds, and mean 104.7.  

In Live1, 532 unique Workers participated in the study. In Live2, 427 unique 

Workers participated. Across the 12,480 HITs of Live1, 9 different DPIs were 

recorded (including unknown). A DPI of 264 was most common with 2,577 
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HITs (20.7%). In Live2, 9 different DPIs were recorded and a DPI of 72 was 

most common with 2,555 HITs (20.5%) (Figure 13B). 

 

Figure 13. Summary statistics for Live1 and Live2. A: time course for 

Live1 and Live2 (HITs completed per hour). B: screen DPIs recorded. 

C: catch trials passed. D: gender distribution. E: age group 

distribution. F: screen gammas x10.   

In total, 9 different gamma settings were recorded in Live1 and 10 in Live2 

(Figure 13F). In Live1, the most common gamma was 201 with 3,197 HITs 

(25.6%) and the least common was Unknown with 2 HITs (0.02%). In Live2, 

the most common gamma was 182 with 2,335 HITs (18.7%) and the least 

common was 193 with 895 HITs (7.1%) (Figure 13F). 

In Live1, 54 browser and operating system (OS) combinations were 

recorded. The most common was Google Chrome 39 for Windows with 

6,070 HITs (48.6%). The most common OS was Windows with 11,843 HITs 
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(94.9%). In Live2, 39 browser and operating system (OS) combinations were 

recorded. The most common was Google Chrome 43 for Windows with 

6,050 HITs (48.5%), followed by Mozilla Firefox 38 for Windows with 4,440 

HITs (35.6%). The most common OS was Windows with 11,890 (95.3%).  

In Live1, the number of Workers in each gender were approximately equal 

with 5,810 HITs male (46.6%) and 5,837 HITs female (46.8%). In Live2, the 

number of Workers in each gender was also approximately equal with 6,570 

HITs male (52.6%) and 4,640 HITs female (37.2%) (Figure 13D). In both 

cases, gender distribution across the texture families was approximately 

equal. 

The most common (self-reported) age group in Live1 was 28-32 years with 

2,839 HITs (22.7%). The least common age group was 59+ years with 38 

HITs (0.3%). HITs were approximately normally distributed across the age 

groups. The most common age group in Live2 was 28-32 years with 3,505 

HITs (28.1%). The least common age group was 59+ years with 140 HITs 

(1.1%) (Figure 13E).  

The total number catch trial passes per HIT in Live1 were evaluated (Figure 

13C). Each HIT contained 8 catch trials in total, randomly distributed 

between the long and short conditions. The most frequent was 8 catch trial 

passes with 4,837 HITs (38.8%). HITs were retained if the total catch trial 

passes were >= 4 (11,288 HITs, 90.4% retained). In Live2, each HIT 

contained 8 catch trials in total, 4 in the long presentation condition and 4 in 

the short presentation condition. The most frequent was 8 catch trial passes 

with 4,814 HITs (38.6%). Again, HITs were retained if total catch trial passes 
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were >= 4 (11,052 HITs, 88.6% retained). The number of catch trial passes 

was reasonably consistent across texture types. 

Every Worker that submitted HITs in Live1 was paid $0.10 AUD per HIT, 

regardless of catch trial passes. Those that completed 28 or more HITs 

received a $0.80 bonus (there were 41 in total and some Workers earned 

more than one bonus). Therefore, the total paid for 12,480 HITs was 

$1280.80 AUD. The cost per HIT was $0.113 AUD ($6.81 AUD per hour). 

Every Worker that submitted HITs in Live2 was paid $0.50 AUD per HIT, 

regardless of catch trial passes. Those that completed all 6 rays of a trico 

plane received a $1.00 bonus (there were 309 bonuses in total). Therefore, 

the total paid for 12,480 HIT-equivalents was $1,557.00 AUD. Based on the 

11,052 HITs retained with catch trial passes >= 4, the cost per HIT was 

$0.1409 AUD ($8.45 AUD per hour). 

Lastly, the number of repeat Workers was analysed (Figure 14). The 

performance of the repeat Workers is analysed below in Section 4.4.6. In 

total, 31 Workers participated in both Live1 and Live2. In the figure below, 

the number of HITs completed per Worker has been sorted for Live1, and 

then plotted over the number of HITs completed in Live2.  
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Figure 14. Repeat Workers in Live1 and Live2. In total, 532 Workers 

participated in Live1 and 427 in Live2; 31 Workers participated in both 

studies and the number of HITs they completed per study is plotted 

here. 

 

4.4.3 Live1 Performance Data 

All Live1 performance data was analysed after filtering the data by catch trial 

passes. i.e.: data from Workers that failed >= 4 catch trials was excluded. In 

the first instance, boxplots were produced for each ternary texture type (one 

example is shown in Figure 15; for completeness, the other plots are 

included in Appendix 6.8).  
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Figure 15. Performance data for gamma_A1 ternary textures in Live1. 

HITs where Workers failed >= 4 catch trials were excluded. The three 

plots refer to the combined (top), long (middle) and short (bottom) 

presentation times. The dashed red lines divide the plots into the 6 

rays with the following colour-biases: B (Black); BG (Black-grey); G 

(Grey); GW (Grey-white); W (White); WB (White-black). The step and 
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ray values are indicated on the X axis, using the Victor nomenclature 

discussed in Section 4.3.3. 

 

Based on these performance functions, Weibull plots were produced from 

the Live1 data. Due to the low discrimination performance levels for some 

texture types, Weibull plots could not always be fitted to the data. Therefore, 

the step levels were adjusted to make the textures more salient in Live2. The 

main change was to increase the minimum signal level tested, given that in 

most cases the maximum signal level of 1.0, or very close to it, was already 

being tested. The Live1 data is further analysed in Sections 4.4.5 and 4.4.6. 

The actual step levels used in Live1 and Live2 are summarised in Table 2 in 

Section 4.4.5.  

 

4.4.4 Live2 Performance Data 

All Live2 performance data was analysed after filtering the data by catch trial 

passes (again, Workers that failed >= 4 catch trials were excluded). Boxplots 

were produced for each ternary texture type (one example is shown in Figure 

16, the other plots are included in Appendix 6.9).   
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Figure 16. Performance data for beta_diag_AD12 ternary textures in 

Live2. HITs where Workers failed >= 4 catch trials were excluded. The 

three plots indicate the combined (top), long (middle) and short 

(bottom) presentation times. The dashed red lines divide the plots into 

the 6 rays with the following colour-biases: B (Black); BG (Black-grey); 

G (Grey); GW (Grey-white); W (White); WB (White-black). The step 

and ray values are indicated on the X axis.  
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As will be shown below, Live2 should have improved discrimination 

performance, so Live2 was analysed further in terms of Weibull plots and 

isodiscrimination contours (Sections 4.4.7 and 4.4.8). First though, we will 

analyse the differences between the Live1 and Live2 data sets, and therefore 

analyse the effect of sequential versus pseudo-random (random within a trico 

plane) presentation.  

 

4.4.5 Comparison of Live1 and Live2 Performance 

Colourmaps were produced to compare the Live1 and Live2 performance 

functions for the short, long and combined presentation times. The 

comparison of the Live1 and Live2 performance data informs us of the effect 

of pseudo-random, versus sequential presentation by step, within the trico 

plane (Figures 17 and 18).  
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Figure 17. Colourmap of median performance data for Live1. HITs 

where Workers failed >= 4 catch trials were excluded. The three plots 

indicate the combined (top), long (middle) and short (bottom) 

presentation times. The steps and rays are indicated on the X and Y 

axes respectively. Thus each row represents a trico-plane (Figs. 6 and 

7) and the columns represent steps of correlation, from lowest to 

highest going left to right in blocks of 5 steps. 
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Figure 18. Colourmap of median performance data for Live2. HITs 

where Workers have failed >= 4 catch trials were excluded. The three 

plots indicate the combined (top), long (middle) and short (bottom) 

presentation times. The steps and rays are shown as for Fig. 17. 

 

When making a direct comparison between Live1 and Live2 performance 

data, it is essential that we take into consideration the changes in the step 

levels implemented in Live2. One way to account for this is to only examine 
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the step 5 performance values. These values are very similar between the 

Live1 and Live2 studies, as summarised in the following table, in which the 

largest differences are highlighted (Table 2). 

 

Table 2. Summary table of the decorrelation levels used in Live1 and 

Live2 (step 5 only, the minimum decorrelation level). The most distinct 

step levels are highlighted. The texture names are shown in the 

leftmost column. The colour-biases are shown in the top row as 

follows: B (Black); BG (Black-grey); G (Grey); GW (Grey-white); W 

(White); WB (White-black).  
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With these differences and similarities in mind, we can now repeat the 

colourmap above, but only consider the step 5 values, i.e. the textures for 

each trico axis with the higher degree of correlation. Colourmaps for the long 

and short presentation times are shown below in Figures 19 and 20.  

 

  

Figure 19. Colourmap of median performance data for Live1 (top) and 

Live2 (bottom) for the long presentation condition. HITs where 

Workers failed >= 4 catch trials were excluded. Only step 5 values are 

shown, which allows for direct comparison between the Live1 and 

Live2 phases (see Table 2). 
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Figure 20. Colourmap of median performance data for Live1 (top) and 

Live2 (bottom) for the short presentation time. HITs where Workers 

failed >= 4 catch trials were excluded. Only step 5 values are shown. 

Again, refer to Table 2 for actual step levels. 

 

Previous studies, including some using the current alpha textures, have 

found our discrimination ability to be pre-attentive and relatively unaffected 

by presentation times (Taylor et al., 2008). In contrast, in the current study, 

performance functions for the short condition are clearly lower for all textures 

examined. Therefore, further analysis was performed using the long 

condition data.   
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4.4.6 An Evaluation of Repeat Workers 

In total, 31 Workers participated in both Live1 and Live2 (see Figure 14 in 

Section 4.4.2). Where possible, the repeat performance of these Workers 

was analysed; 11 Workers were identified as having sufficient repeat 

performance data available. Again, only step 5 values were compared (see 

Table 2 in Section 4.4.5). One example of this analysis is shown below in 

Figure 21.

 

Figure 21. Plots of median performance for repeat Worker ID 

AAC5XT7UY7B2K. Top: Colourmap of median performance for Live1 

and Live2. Bottom: plots of Live1 and Live2 median performance. This 

analysis is based on the long presentation time and HITs where 

Workers failed >= 4 catch trials were excluded. Only mean 
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performance levels for step 5 textures are plotted. Recall that for the 

4AFC test, chance performance is 0.25. 

 

For all 11 Workers, there appeared to be a significant improvement in 

performance from Live1 to Live2 for the second order ternary textures 

(betas), suggesting a learning effect. This data is summarised in Figure 22, 

where Live2 performance has been subtracted from Live1 performance; 

thus, positive values indicate improvement. The black areas indicate where 

comparison data was not available. i.e.: the given Worker did not complete 

HITs for the given ternary texture in both Live1 and Live2.  

 

 

Figure 22. Colourmap of median performance data for 11 repeat 

Workers where Live1 has been subtracted from Live2. Positive values 

indicate improvement in performance between Live1 and Live2 (and 
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suggest learning). Learning is most evident for the beta textures. This 

analysis is based on the long presentation time and HITs where 

Workers failed >= 4 catch trials were excluded. Only step 5 values are 

considered. Black areas indicate insufficient data for analysis.  

 

To further evaluate possible learning effects in repeat Workers, a series of 

Bland-Altman plots were produced for the second-order textures (Figures 23 

to 25). Note that the numbers of Workers sampled is show in parentheses 

next to the texture name; refer to Figure 22 above, which indicates where 

data was available to analyse a given Worker/texture pair. For example, two 

Workers completed Live1 and Live2 HITs for texture beta_hv_AB11 (top plot 

in Figure 23). As above, only step 5 values are considered (to allow direct 

comparison). Therefore, each Worker produced 6 performance scores in 

Live1 and Live2 for beta_hv_AB11 (one for each colour bias).   
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Figure 23. Bland-Altman plots for the repeat Workers for the beta 

texture types. The numbers of Workers sampled is indicated in 

parentheses next to the texture name. 
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Figure 24. Bland-Altman plot for the repeat Workers for all 4 beta 

textures pooled. In total, data from 6 repeat Workers was sampled. 

 

Figure 25. Summary of mean and mean+/-1.96*SD data derived from 

Bland-Altman plots. The legend indicates which beta texture family 

was sampled. 
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4.4.7 Weibull Functions from Live2 Data 

Weibull functions were derived from the Live2 performance data; the analysis 

proceeded as follows. In the first instance, in order to try to obtain the best 

signal to noise ratio, performance functions were plotted using various 

subsets of the data; this included the number of catch trial passes, the 

minimum number of HITs completed per Worker, and the subset of 

performance functions (50th percentile, 75th percentile, RMS). Based on a 

comparison of these conditions, >=20 HITs completed and 75th percentile 

performance were chosen, as shown in Figure 26A below. Note also the 

arrangement of the plots in the context of the trico plane. The plots contain 

inset examples of the ternary textures examined; these correspond to the 

reduced trico plane shown in Figure 26B.  

Based on an examination of these plots, it appears that performance 

functions for the corners of the trico plane (i.e. for the canonical black, white 

and grey dominated correlations) are higher than those of the quantitatively 

derived 50:50 mixtures for the thetas and alphas. A clear example of this is 

shown for the alpha_ABCD1111 in Figure 27 below.  

Weibull plots were then produced using the data where Workers completed 

>=20 HITs, 7 catch trial passes, and 75th percentile. An example Weibull plot 

is shown in Figure 28. Where possible, the step levels were identified which 

predicted 0.60 performance. Where Weibull functions could not be fitted, the 

observed performance at zero decorrelation was instead recorded. These 

values were then used to form isodiscrimination contours (See Section 

4.4.8). 
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Figure 26. A: Plots of 75th percentile performance for 

beta_diag_AD12, where Workers completed >=20 HITs. Examples of 

the textures examined are inset. Different levels of catch trial passes 

are compared, as indicated by the different coloured plots. For 

example, the red plot indicates performance by Workers that 

completed >=20 HITs and passed >=3 catch trials ("203”). B: a 

miniature representation of the beta_diag_AD12 trico axis, which puts 

the performance plots in the context of the trico plane.  

 

 

 

 

 

A B 
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Figure 27. A: Plots of 75th percentile performance for 

alpha_ABCD1111, where Workers completed >=20 HITs. Examples 

of the textures examined are inset. Different levels of catch trial 

passes are compared. Note the markedly higher performance for 

textures at the corners of the trico axis, versus the derived mixtures. 

B: a miniature representation of the alpha_ABCD1111 trico axis.  

 

 

 

 

 

 

 

A 
B 
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Figure 28. Weibull fit derived from Live2 data for the beta_diag_AD11 

textures. Using Weibull functions such as these, the step levels were 

identified which predicted a 0.6 performance limen.  

 

4.4.8 Isocontours from Live2 

Isodiscrimination contours were produced for each ternary texture family, 

based on the values extracted from Weibull functions using Live2 data 

(Figures 29 and 30; also see Section 4.3.7 for details).  
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In some cases, for the theta and alpha textures, Weibull functions could not 

be successfully fitted; in this case, the performance level was as recorded at 

a step level of 1.0. This is reasonable because the low performance meant 

performance was not close to saturation. Therefore, we obtained the 

unsaturated performance to a fixed signal level: 1.0.  
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Figure 29. Isodiscrimination contours for 5 of the 13 ternary texture 

families. The isocontour parameters were derived from Weibull plots 

using 75th percentile performance data from Live2 (long presentation 

condition), where Workers completed >=20 HITs and >=7 catch trial 

passes. Upper plots: gamma and beta textures; step levels for each 

ray have been plotted which yield a predicted performance of 60% 

(wcrit). Thus, the axes of elongation correspond to the directions in 

which changes are least salient. Lower plots: corresponding plots of 

the pixel probabilities for each ray. Refer to Figures 5 and 6 for the 

corresponding reduced trico plots.  
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Figure 30. Isodiscrimination contours for 8 of the 13 ternary texture 

families. Isocontour parameters were derived from Weibull plots using 

75th percentile performance data from Live2 (long presentation time), 

where Workers completed >=20 HITs and >=7 catch trial passes. 

Upper plots: theta and alpha textures; performance at step 5 (1.0 

decorrelation, Perf at Step 1.0) is plotted; thus, the axis of elongation 

corresponds to the direction in which changes are most salient. Lower 

plots: corresponding plots of the pixel probabilities for each ray. Refer 

to Figures 5 and 6 for the corresponding reduced trico plots.  

 

4.5 Discussion 

We found that perceptual salience varied for each image statistic examined. 

For the gamma and beta textures, criterion step levels were obtained from 

Weibull plots, which predicted 0.60 performance (Figure 29). The resulting 
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mean thresholds were gamma 0.12, beta_hv 0.26, and beta_diag 0.34. This 

corresponds to a sensitivity rank-order of gamma > beta_hv > beta_diag. 

Weibull functions could not be fitted for the thetas and alphas. Therefore, the 

observed performance at zero decorrelation was instead plotted on 

isocontours (Figure 30). These values are not directly comparable to the 

Victor data (although we can evaluate relative salience).   

The mean performance values at step level 1.0 (zero decorrelation) were 

theta 0.18 and alpha 0.22. Note that, contrary to the threshold values 

discussed above for the gammas and betas, larger mean performance 

values indicate more salient textures. Adding these values to our sensitivity 

rank-order gives: gamma > beta_hv > beta_diag > alpha > theta. 

The most salient statistic (gamma) is defined by the pixel-by-pixel mean and 

variance. Second-order statistics affect the spatial-frequency content of the 

stimulus and are thus readily detectable by linear filters; therefore, it is logical 

that the beta textures were more salient than the higher-order textures 

(thetas and alphas). However, the current study also found fourth-order 

correlations (alphas) to be more salient than third-order correlations (thetas), 

which is less readily explicable. 

Using the isocontours (Figures 29 and 30 above), values were extracted for 

each texture type and ray and summarised in Figure 31 below.  
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Figure 31. A: Threshold values for predicted performance of 0.60 

(extracted from isocontours, Live2 data). Higher values correspond to 

the direction in which changes are less salient. B: Performance values 

at a step level of 1.0 (i.e.: no decorrelation). Higher values correspond 

to the direction in which changes are more salient.  

The extracted values themselves are summarised in Table 3 below. Based 

on this data, it is clear that for the first- and second-order textures, the white-

black and grey-bias rays were consistently the least salient, followed by 

white- or black-bias. For the third- and fourth-order textures, the black-grey 

and grey-white textures were consistently the least salient, followed by white-

black. In both cases, for the first/second order and the third/fourth order 

textures, it is notable that the pattern of salience is so consistent across all 

textures considered.  

A 

B 
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Table 3. Summary of the first, second and third least salient rays. 

Data isolated from isocontours (see Figure 31 above). The identity of 

the ray is indicated in parentheses as follows: White (W); White-Black 

(WB); Grey (G); Grey-White (GW); Black (B); Black-Grey (BG).    

In Section 4.4.7, we also noted that performance functions for the corners of 

the trico plane are higher than those for the quantitatively derived mixtures. 

This is supported by the isocontour analysis of the thetas and alphas. How 

do these findings compare to those of previous studies by Victor et al. (Victor 

and Conte, 2012, Victor et al., 2013)?  

Victor et al. investigated binary stochastic texture performance in their 2012 

paper (Victor and Conte, 2012) using 6 normal subjects ages 25 to 51, 5 of 

which were practiced psychophysical observers in tasks involving texture 

discrimination. A four alternative choice task was used, the same protocol as 

previously described in our binary HIT (Victor and Conte, 2012, Seamons et 

al., 2015a) and used here (Section 4.3.4). They used pairs of image statistics 

and determined the salience of each coordinate in isolation, as well as 
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analysing how they interacted (Victor and Conte, 2012). After a 2 hour period 

over which performance functions stabilized, performance functions were 

calculated and fit to Weibull functions along each axis (Victor et al., 2005, 

Victor and Conte, 2012).  

Victor et al. found the performance variation across observers to be small. In 

terms of the thresholds corresponding to a fraction correct of 0.625, there 

was ~10% scatter for gamma, beta_hv, and beta_diag and ~20% scatter for 

theta and alpha. Across all observers, the thresholds for a fraction correct of 

0.625 were gamma 0.157, beta_hv 0.286, beta_diag 0.415, theta 0.824 and 

alpha 0.648 (Victor and Conte, 2012).  

In both our study and that of Victor et al. (Victor and Conte, 2012) perceptual 

salience varied for of each image statistic examined. For the gammas and 

betas, where thresholds were calculated, our findings were very similar. We 

also derived the same rank order: gamma > beta_hv > beta_diag > alpha > 

theta. This is notable as Victor's study utilized experienced visual 

psychometric participants, whereas we sampled nearly 1,000 naïve, 

unsupervised subjects via a crowdsourcing platform. Again, note that Victor 

et al. used binary textures whereas in the current study we used ternary 

textures (although the white-black rays contain only binary textures). 

In a follow-up study in 2013, Victor et al. focused on the binary beta and 

theta ternary textures (Victor et al., 2013). Again, human sensitivity was 

shown to be selective, with sensitivity to betas (second-order) being 2-3 

times higher than that for thetas (third-order). In the current study, because 

threshold values were not calculated for the theta textures, we can instead 
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examine the step 5 (zero decorrelation) performance values for the betas 

versus the thetas (Live2 data, long condition, catch trial passes >=4). This 

comparison is shown in Figure 20 of Section 4.4.5 above. The mean 

performance for the Live2 step 5 betas was 0.757; the mean performance for 

the Live2 step 5 thetas was 0.313. Therefore, in the current study, human 

sensitivity to ternary betas is 2.42 times higher that than for thetas, which is 

consistent with the Victor study cited above for binary textures (Victor et al., 

2013).  

Victor et al. also found that sensitivity to positive and negative deviations of 

image statistics (black- and white-bias) was not significantly different for the 

betas. For thetas, sensitivity to positive correlations (white-bias) was 10% 

greater than sensitivity to negative correlations (black-bias) (Victor et al., 

2013). In the current study, the black-bias and white-bias rays were 

analysed. Using Live2 data across the 4 subtypes of beta textures, the 

median black-bias threshold for Live2 was 0.287 (95% confidence interval 

(CI) of 0.218 to 0.357) and median white-bias was 0.262 (95% CI of 0.182 to 

0.341). Because of the large confidence interval, we cannot conclude that 

there was a significant difference in black- and white-bias sensitivity. 

For the theta textures, the median black-bias performance level at step 5 

(zero decorrelation) was 0.234 (95% CI of 0.204 to 0.265) and median white-

bias was 0.187 (95% CI of 0.175 to 0.200). Based on the median data, the 

sensitivity to positive correlations (white-bias) was about 20.1% less than 

sensitivity to negative correlations (black-bias), roughly double that found by 

Victor (Victor et al., 2013). However, according to the 95% confidence 
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interval, this sensitivity difference could be as little as 2.0% or as high as 

33.9%. 

To an ideal observer, each image statistic surveyed is independent and 

should be equally informative. The variations in salience that we have 

observed between rays within a given trico axis, and between different 

texture families, must reflect the sensitivities and limitations of neural 

processing. They are consequently a manifestation of efficient coding 

(Barlow, 2001, Barlow, 1961). In keeping with efficient coding, humans have 

restricted information budgets; therefore humans have evolved to be 

sensitive for certain, maximally informative directions within the texture space 

(see Chapter 1, Section 1.4). The evolution of the human visual system has 

been driven by the tasks that the organism must perform, environmental 

constraints, and the computational limitations of neurons (both structural and 

metabolic) (Simoncelli and Olshausen, 2001). Therefore, human sensitivity to 

certain image statistics is intrinsically linked to historical ecological and 

behavioural imperatives. Presumably then, these maximally informative 

directions correspond to those within natural images. 

The Live1 and Live2 studies differed in their mode of texture presentation. In 

Live1, the textures were presented in a pseudo-random fashion: random 

steps from any of the 6 rays within a trico plane. In Live2, the textures were 

presented in step order along each ray, starting with the most salient 

example, giving the subject the best chance of learning the texture types 

without distraction by other texture types within the trico plane. In Section 

4.4.5 we analysed the effect differing presentation order. The analysis used 

only step 5 values, which were directly comparable in the majority of cases. 
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An improvement from Live1 to Live2 was observed, but the magnitude of the 

improvement was small. This suggests that the order of presentation of 

ternary textures within a trico plane does not significantly increase texture 

discrimination learning. This finding is interesting, as it is counter-intuitive. 

We might expect that presenting the most salient example of a texture to a 

naïve Worker first, and then subsequently presenting increasingly more 

difficult examples in step order, might promote learning and therefore boost 

Live2 performance. This does not appear to be the case. 

The performance of the 31 repeat Workers was analysed Section 4.4.6. This 

data appears to show that gamma performance is already maximal, or close 

to maximal, as the gammas are highly salient. Theta and alpha performance 

also appears to be close to maximal, even at low levels of decorrelation, but 

in this case the textures are highly non-salient. In contrast, performance on 

the beta textures is not maximal; thus, for naïve subjects, there is room for 

performance improvements after repeated presentations (and thus learning). 

In the introduction and in Chapter 1 (Section 1.5.3) we considered whether 

grey is perceived differently. Is there evidence of this from our isocontours 

and extracted values (Figures 29, 30 and 31)? For the second-order ternary 

textures (gammas and betas), the grey-bias rays were consistently the 

second least salient. For the third- and fourth-order ternary textures (thetas 

and alphas), the black-grey and grey-white rays were consistently the least 

salient, followed by white-black; however, grey-bias was one of the more 

salient textures. Therefore, we did not find a consistent pattern which 

indicated that grey tokens confer non-salience, as we might have expected.  
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A more consistent pattern emerged which showed that for the thetas and 

alphas, performance functions for the corners of the trico plane were higher 

than those for the quantitatively derived mixtures. To put it another way, the 

canonical theta and alpha textures at the corners of the trico plane (white-, 

grey- and black-bias) were consistently more salient than the 50:50 mixtures 

(see Figure 31). Furthermore, contrast adaptation, the variance of the black-

white mixture, is higher than any other ray.  
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Chapter 5: Thesis Summary and Future Directions 

At the heart of this thesis is the evaluation of human texture perception using 

texture analysis algorithms. Basic visual judgments are statistical in nature 

and we took a primarily statistical approach to evaluating texture perception. 

 

5.1 Thesis Overview  

5.1.1 Chapter 2 

In Chapter 2, we used binary isotrigon textures to evaluate the underlying 

mechanisms of higher-order texture discrimination; this chapter has been 

subsequently published (Seamons et al., 2015a).  

The visually salient structure of binary isotrigon textures is exclusively due to 

fourth- and higher-order spatial correlations (Maddess et al., 2004, Maddess 

et al., 2007, Julesz et al., 1978, Victor, 1994, Gilbert, 1980). Thus, in order to 

discriminate a particular isotrigon texture from noise patterns, it is necessary 

to identify its average complex, higher-order structure: isotrigon textures 

cannot be discriminated based on luminance or other lower-order properties. 

Whereas some textures are clearly structured and readily recognisable, 

others cannot be easily differentiated from noise (Maddess and Nagai, 

2001). 

Humans use a number of neurophysiological mechanisms to capture visually 

salient higher order structure. One statistically well principled method to infer 

the number and form of the underlying independent mechanisms is to use 
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Factor analysis of multiple human performance functions using a texture 

discrimination task; ideally, about as many functions should be determined 

as texture types examined. The performance functions can be derived from 

many individuals, or many repeats from single individuals (Rosli et al., 2009, 

Maddess and Kulikowski, 1999, Sekuler et al., 1984, Simpson and 

McFadden, 2005). Here we reported using the latter methodology, many 

repeats from single individuals, but also comparing the derived factors 

across different individuals. 

In Chapter 2, we described binary isotrigon discrimination experiments using 

ten novel VnL2 isotrigon textures in addition to 17 standard V3L2 isotrigon 

textures. Subjects were found to differ somewhat in their ability to detect 

image structure defined by fourth- and higher-order spatial correlations. After 

calculating performance functions for each subject (probability correct across 

the different textures) and their d-prime values, two forms of Factor analysis 

were performed based on rotated principal components and maximum 

likelihood estimates (Reyment, 1996, Norris and Lecavalier, 2010). We then 

analysed the number of neurological mechanisms which govern the 

detection of fourth- and higher-order image structure in two ways: using a 

Scree plot and by analysing communalities (Cattell, 1966, Hayton et al., 

2004, DeVellis, 2012, Zwick and Velicer, 1986). Communalities indicated the 

proportion of variance accounted for within the data for each texture based 

on an N factor model; we sought the models that produced the most 

balanced communalities.  

We found that three factor models gave relatively balanced communalities 

for the VnL2 textures, and accounted for about 85% of the variance for a 
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separate V3L2 17-texture data set from two subjects. For those V3L2 

textures, the lowest communalities were for the Even- and Odd- El textures: 

these are among the least visually salient binary isotrigon textures (Maddess 

and Nagai, 2001, Tkacik et al., 2010, Victor and Conte, 1989, Victor and 

Conte, 1991) and possess fourth-order correlations that rarely occur in 

natural scenes (Tkacik et al., 2010). This study supports the possibility that 

three is the lower bound of the number of mechanisms underlying higher 

order texture discrimination. The Maddess group has previously provided 

evidence that the number of independent mechanisms is less than 10 (Taylor 

et al., 2008, Barbosa et al., 2013), and is perhaps as small as 3 to 4 

(Maddess and Nagai, 2001, Maddess et al., 2007), using different types of 

isotrigon texture and means of determining the estimated number of 

mechanisms. 

A previous study by Barbosa et al. asked if linear combinations of various 

moments of the Minkowski functionals (MFs) could explain human 

performance functions for 33 types of isotrigon texture, 25 of which were 

used here (Barbosa et al., 2013). Texture 042 was the least well explained 

by the 3 factor model, showing the lowest communalities in 3 of the 4 data 

sets. In this case however, 042 was not distinct from the other textures 

based on MF content. 

Other than JWS, none of the subjects showed significant evidence of 

learning. In a previous study, some subjects markedly improved their ability 

to discriminate V3L2 textures; the increase in probability correct for 16x16 

textures was 20% for one and 30% for another texture type in just 5 repeats 

(Maddess and Nagai, 2001). A recent study by our group, which used a set 
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of 17 V3L2 textures, found strong evidence of learning effects described by 

an exponential rise with a time constant of about 5 days (Coy et al., 2014). 

That data also showed that a three factor model was reasonable. 

The formation of recursively applied products is physiologically plausible and 

may occur via dendritic back-propagation (Stuart et al., 1997, Buzsaki and 

Kandel, 1998) or dendritic spiking (Mel, 1993, Stuart et al., 1997, Hausser et 

al., 2000). An unpublished modelling study from our group has also shown 

that dendritic back propagation in one pyramid cell is sufficient to 

discriminate some isotrigon textures from random ones (Taylor, 2013). 

Overall, the mechanisms identified in this study, and previous studies 

(Maddess and Nagai, 2001, Maddess et al., 2007), may represent some 

combination of recursive or rectifying processes.  

 

5.1.2 Chapter 3 

In Chapter 3, we continued our exploration of higher-order texture 

discrimination using a complementary approach to that employed in Chapter 

2, i.e. analysing isotrigon discrimination performance functions from many 

individuals. An efficient way to implement such a study was to use a 

crowdsourcing platform. For this study, we utilised the crowdsourcing 

platform Amazon Mechanical Turk (mTurk) (Ross et al., 2010, Pontin, 2007).  

A concern with a novel platform such as mTurk is whether the data derived is 

of high quality. Issues such as demographic variations, subject motivation 

and subject expertise apply to many mTurk studies and have been well 

studied (Ipeirotis, 2010b, Kittur et al., 2008, Mason and Suri, 2012, Ipeirotis, 
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2010a). Several authors have successfully used mTurk to replicate 

laboratory studies (Paolacci et al., 2010, Horton et al., 2011, Crump et al., 

2013). However, there is a lack of published mTurk studies involving visual 

psychometric testing (Heer et al., 2010, Cole et al., 2009, Freeman et al., 

2013). Therefore, this Chapter fulfilled the secondary role of evaluating 

crowdsourcing as a platform for visual psychometric research; in so-doing it 

also laid the foundations for a second, larger crowdsourced study (described 

in Chapter 4). 

In the first part of Chapter 3, we discussed the development and 

implementation of a binary isotrigon discrimination task (HIT) using mTurk. 

The HIT was based on a four alternative forced choice task developed by 

Victor et al. (Victor et al., 2013). It was intended to provide a more complex 

and naturalistic stimuli than those traditionally used in visual perception 

experiments based on gratings. For testing purposes, a pilot study was 

completed within the non-public Sandbox environment. During this "Lab" 

phase, laboratory members completed 270 HITs on 6 different platforms. 

The effects of variations between platforms were then evaluated, using 

correlational analysis, Factor analysis, and coefficients of repeatability (Bland 

and Altman, 1986, Bland and Altman, 1999, Bland, 2000, Vaz et al., 2013).  

Coefficients of repeatability and Pearson's correlation coefficients were 

consistently low across the machine types tested. Factor scores were also 

plotted from a Factor analysis. Machine-specific features appeared to have 

little impact on discrimination performance. Small differences were observed 

for two screen sizes (the extremes of those tested). In conclusion, the HIT 

was found to be robust to platform variations such as gamma, DPI, and 
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physical screen size; this is consistent with a previous study by our group 

which evaluated the effects of contrast and pixel size on isotrigon 

discrimination (Maddess and Nagai, 2001).  

In the second part of Chapter 3, the HIT was uploaded to the live mTurk 

website and crowdsourced performance data was collected in two phases 

(Live 1 and Live2). We found the rate of HIT completion to be broadly 

consistent with previous reports (Heer et al., 2010, Buhrmester et al., 2011). 

In terms of catch trial failures, the quality of the data was excellent (90.4% 

HITs retained in Live1 and 95.2% in Live2). There was an even distribution of 

catch trial failure across textures, indicating that the catch trials did not bias 

any particular texture type.  

To further evaluate its quality, the Live1 and Live2 data sets were compared 

to the Lab (M1-M6) data set and a second data set ("DC"), which was 

gathered under supervised laboratory conditions using naïve subjects (Coy 

et al., 2014). The distribution of median performance scores for the Live1/2 

data sets was superficially very similar to the M1-M6/DC results. The 

performance scores of the DC data set were slightly higher than Live1/2 

across the textures examined. The performance scores of the M1-M6 data 

set were shifted upwards 10-15% with respect to the Live1/2 data sets, which 

may indicate the experience of that subject to the study protocol. In the case 

of the DC data set, subjects started as naïve, but became more experienced 

with repeated visits; this is consistent with previous findings that the 

discrimination of these textures can be improved by learning, although many 

repeats appear to be required (Maddess and Nagai, 2001, Taylor et al., 

2008, Coy, 2014).  
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A strong correlation was observed between M1-M6/DC data sets and Live1/2 

based on median performance. Absolute repeatability was evaluated using 

coefficient of repeatability (CR), derived from the Bland-Altman plots. The CR 

between M1-M6/DC and Live1/2 were low and suggested that the Live 

mTurk study had accurately reproduced the texture discrimination results 

that were produced by supervised laboratory trials. The CR between Live1 

and Live2 was only 9.4% and this very low score indicates that the live study 

itself has a good repeatability.  

Based on these metrics, we concluded that, in the case of an isotrigon 

texture discrimination task, mTurk can produce comparable quality data to 

that derived from laboratory studies. The strong agreement between Live1/2 

and M1-M6/DC data sets is interesting considering the considerable 

variations in the browser, screen size, screen DPI and OS reported. One of 

the few other visual psychometric mTurk studies observed a 92% correlation 

between mTurk and laboratory data for 15 textures tested (Freeman et al., 

2013). Other non-visual studies have reported gathering high quality mTurk 

data based on judgment and decision-making (Paolacci et al., 2010) and 

other behavioural psychology experiments including the Prisoners’ Dilemma 

(Horton et al., 2011, Crump et al., 2013).  

Factor analysis of the Live1/2 data found that 3 to 4 is the lower bound of the 

independent neurological mechanisms that govern texture discrimination in 

this study. This finding is consistent with the results reported in Chapter 2 

(Seamons et al., 2015a) and for other isotrigon textures using different 

methods (Maddess and Nagai, 2001, Maddess et al., 2007, Coy, 2014). In 
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light of the different study modalities, this strong congruence in notable and 

lends further support to the 3-factor model.  

 

5.1.3 Chapter 4 

In Chapter 4, we focused on ternary textures generated via the stochastic 

method (Victor and Conte, 2012). When studying human texture perception, 

the selection of appropriate visual stimuli is challenging. The space of signals 

that the visual system encounters is rich and varied; thus, many different 

image statistics could potentially drive visual judgments. The stochastic 

textures are statistically well-principled and allow multiple image statistics are 

be independently controlled. The stochastic method has previously been 

described for the binary textures (Victor and Conte, 2012). 

Palettes of stochastic  ternary textures are created in a space, where the 

centre location contains ternary noise; the three corners of the space are 

canonical texture types and the remaining space is filled with quantitatively 

derived mixtures (Victor and Conte, 2012). The canonical ternary textures 

have well-defined spatial correlation structure of different orders between the 

three grey levels of the textures. They are classified according to the number 

of pixels that are constrained within a 2x2 pixel grid. If a single pixel is 

constrained, the textures are termed "gamma". If 2 pixels are constrained, 

they are termed "beta_hv" or "beta_diag" (depending on the orientation of 

the constrained pixels). If triplets of pixels are constrained they are termed 

"theta" and quadruplets of pixels constrained are "alpha" (Victor et al., 2013, 

Victor and Conte, 2012). The ternary textures can be projected onto so-
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called trico planes; in so-doing, three-level stimuli can be displayed 

coherently in two dimensions.  

To the ideal observer, changes in all directions of the trico plane are equally 

detectable. However, humans are not ideal observers; in accordance with 

the efficient coding hypothesis, the informational resources of the human 

visual system are constrained. The efficient coding hypothesis states that 

neurons have limited energy budgets and information capacities; therefore, 

they should not waste energy nor bandwidth by transmitting redundant 

information (Barlow, 1961, Barlow, 2001). To put it another way, in order to 

maximise available computing resources, neurons should encode as much 

functional information as is structurally and energetically sustainable.  

If efficient coding holds, we would expect some directions within the trico 

axes to be more informative than others. In light of the large number of 

stochastic ternary textures available, a logical way to proceed was to use 

crowdsourcing to gather texture discrimination functions from a large number 

of subjects. The ternary textures differ from their binary counterparts 

previously studied (Seamons et al., 2015a, Seamons et al., 2015b, Maddess 

and Nagai, 2001, Maddess et al., 2004) by the presence of a third token, 

grey. Therefore, a natural question is whether the grey element of ternary 

textures has special properties with regard to texture perception.  

In Chapter 4, we examined a subset of the possible ternary texture space 

consisting of 13 texture planes (of a possible 66), each with 6 pre-defined 

rays with 5 noise levels. We developed a ternary texture testing 

crowdsourcing method based on that previously described for binary 
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isotrigons (Seamons et al., 2015b). We found that perceptual salience varied 

for each image statistic examined. The textures had a salience rank order of 

gamma > beta_hv > beta_diag > alpha > theta, which is congruent with that 

previously reported for related binary stochastic textures (Victor and Conte, 

2012). The most salient statistic (gamma) is defined by the pixel-by-pixel 

mean and variance. Second-order statistics affect the spatial-frequency 

content of the stimulus and are thus readily detectable by linear filters. 

However, that fourth-order correlations (alphas) are more salient than third-

order correlations (thetas) is less readily explicable. 

We also examined performance along specific directions on the trico planes. 

The six axes explored different ad-mixtures of noise and texture. For the 

gammas and betas, the white-black and grey-bias directions were 

consistently least salient. For the thetas and alphas, the black-grey and grey-

white directions were consistently least salient. To the ideal observer, each 

image statistic should be equally informative. Therefore, the observed 

differences reflect the sensitivities and limitations of neural processing and 

are therefore a manifestation of efficient coding. We hypothesised that the 

grey token of ternary texture may confer non-salience. Indeed, for the 

gammas and betas, the grey-bias was consistently the second least salient. 

However, this relationship did not hold for thetas, or alphas.  

The effect of texture presentation order was also examined. In Live1, 

textures were presented in a pseudo-random fashion (random steps from 

within a single trico plane). In Live2, the textures were presented in step 

order along each ray, starting with the most salient example. Counter-

intuitively, the order of presentation did not significantly affect texture 
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discrimination performance. An analysis of 31 repeat Workers found 

evidence of learning for the beta textures, whereas performance for the 

gammas, thetas and alphas appeared to be already maximal. 

 

5.1.4 Summary 

1. In Chapter 2, we evaluated human texture discrimination using a 

novel set of 10 isotrigon textures (VnL2) and also 17 standard 

V3L2 isotrigon textures 

 

2. About 3 principal neurophysiological mechanisms may govern the 

detection of complex image structure; this is the lower bound. The 

Maddess group has previously provided evidence that the number 

of independent mechanisms is less than 10 (Taylor et al., 2008, 

Barbosa et al., 2013), and is perhaps as small as 3 to 4 (Maddess 

and Nagai, 2001, Maddess et al., 2007, using different types of 

isotrigon textures and means of determining the estimated number 

of mechanisms. 

 

3. There was limited evidence of improved discrimination by learning, 

although it has been observed in other studies by our group. A 

recent study by our group, which used a set of 17 V3L2 textures, 

found strong evidence of learning effects described by an 

exponential rise with a time constant of about 5 days (Coy et al., 

2014). 
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4. In Chapter 3, we described the development of a binary isotrigon 

texture discrimination task for use with the crowdsourcing system 

Amazon Mechanical Turk (mTurk).  

 

5. Under laboratory conditions, we demonstrated that this 

experimental modality was robust across a variety of different 

platforms, which encompassed a range of browsers, operating 

systems, resolutions, physical screen sizes and contrasts.  

 

6. Using mTurk, texture discrimination data was then gathered from 

121 subjects and compared to two independent laboratory data 

sets. Based on Pearson's correlation, coefficients of repeatability, 

and Factor analysis, mTurk is capable of producing visual 

psychometric data which is of comparable quality to that derived in 

laboratory studies using the same testing modality. This validation 

of crowdsourced visual psychometric data is significant because, 

due to perceived technical limitations, very few such studies have 

been published to date (Heer et al., 2010, Cole et al., 2009, 

Freeman et al., 2013).    

 

7. Factor analysis was performed and indicated the presence of 3-4 

independent texture discrimination factors, again consistent with 

previous published studies (discussed above in point 4). This is 
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encourging considering the variety of browsers, screen sizes, 

screen resolutions and operating systems/browsers recorded.  

 

8. In Chapter 4, we analysed the perceptual salience of a range of 

ternary textures using a crowdsourcing platform. We began by 

discussing the development of a ternary texture HIT, based on the 

binary HIT previously described in Chapter 3. The trico planes 

allow what are defined on three sensory dimensions to be 

displayed coherently in two dimensions. The objective of this study 

was to determine which dimensions of the trico plane are 

independently processed.  

 

9. Perceptual salience was found to vary for each image statistic 

examined. We observed the textures to have a salience rank order 

of gamma > beta_hv > beta_diag > alpha > theta, which is 

congruent with that previously reported for related binary 

stochastic textures (Victor and Conte, 2012).  

 

10. We also examined performance along vectors between ternary 

noise and 50:50 mixtures of the three canonical textures per trico-

plane: white:black, black:grey, and white:grey. For the gammas 

and betas, the white:black and grey bias directions were 

consistently the least salient. For the thetas and alphas, the 

black:grey and grey:white directions were consistently the least 
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salient. The observed differences reflect the sensitivities and 

limitations of neural processing and are therefore a manifestation 

of efficient coding.  

 

11. We hypothesised that the grey token may confer non-salience. 

Indeed, for the gammas and betas, the grey bias was consistently 

the second least salient. However, this relationship did not hold for 

thetas or alphas.  

 

12. The effect of texture presentation order was also examined. In 

Live1, textures were presented in a pseudo-random order (random 

steps from within a single trico plane). In Live2, the textures were 

presented in step order along each ray, starting with the most 

salient example. Counter-intuitively, the order of presentation did 

not significantly affect texture discrimination performance. An 

analysis of 31 repeat Workers found evidence of learning for the 

beta textures, whereas performance for the gammas, thetas and 

alphas appeared to be already maximal. 

 

We will now consider future research directions which follow naturally from 

the findings outlined herein. Four such research directions will be 

considered: a study of material perception using 3D stimuli derived from 

binary isotrigon textures; a study utilizing isotrigon discrimination as a clinical 

diagnostic aid in neurological disease; an investigation of 3D illusions in 
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ternary textures; and the application of the ternary texture testing modality to 

convolutional neural networks. 

  

5.2 Future Directions 

5.2.1 “Bones” and Material Perception 

5.2.1.1 Material Perception 

Material perception is the study of how we infer material properties from 

visual information. Based on everyday experience, we can distinguish 

numerous different categories of material and can recognize many specific 

materials within each class (Fleming, 2014). In some cases, this can be 

considered an extension of texture perception, in that we are recognising 

textures and associating them with learned associations about previously 

encountered materials (Landy and Graham, 2004). This must be the case 

where material properties cannot be directly perceived. However, 

judgements about material properties are often extended to unfamiliar 

materials and there is growing evidence that some of this information is 

visually encoded. As Fleming puts it: "…there is almost certainly more to 

material perception than our ability to categorize or recognize familiar 

materials" (Fleming, 2014). Research into material perception aims to 

understand what that visual information is, the neurological processes 

involved in extracting it, and how it is used to guide our behaviour (Anderson, 

2011, Fleming, 2014, Gibson, 2013). This challenge has been aided by 

advances in computer graphics which have made it possible to simulate 

different materials in realistic illumination fields (Anderson, 2011). 
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What is the evidence that some material perception is visually encoded? 

Sharan et al. presented evidence that humans can identify a wide range of 

materials, even with presentations as short as 40 ms (Sharan et al., 2009). In 

another study, Fleming et al. showed subjects photographs of materials and 

asked them to rate qualities such as hardness and gloss. The ratings of the 

individual samples were systematically clustered into categories, suggesting 

that subjects could classify materials through visual judgments of their 

properties (Fleming et al., 2013). 

Subjects also appear to be adept at distinguishing between photographs of 

real and fake materials, again with short (40 ms) presentation times (Sharan 

et al., 2008). This is notable as the differences between the two conditions 

were often subtle and hard to define. The neurophysiological basis for such 

judgements is unclear. However, a recent study by Freeman et al. indicates 

a particular functional role of V2 in the discrimination of natural versus 

synthetic image structure (Freeman et al., 2013). Much of the work on 

material perception has focussed on specific properties such as surface 

roughness, gloss and transparency (Anderson, 2011, Thompson et al., 2011, 

Zaidi, 2011, Padilla et al., 2008, Pont and Koenderink, 2008). Taken 

together, these findings seem to support the hypothesis that - at least in 

certain circumstances - the human visual system can estimate the properties 

of materials from retinal images.  

Despite its subjective ease, material perception poses the visual system with 

significant challenges; the image of a given material can vary dramatically 

depending on variations in lighting, viewpoint and shape. This means that the 

visual system cannot recognize materials by simply matching the image 
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against a stored template. In order to recover the intrinsic properties of a 

material, the visual system must disentangle these various contributions 

(Fleming, 2014). The field of material perception is in its infancy, but three 

theoretical models have emerged (as reviewed in (Fleming, 2014)). It should 

be noted that, although developed through the study of gloss, surface 

roughness, and other parameters, models of material perception can be 

naturally extended to any material properties.  

The theory of inverse optics proposes that the visual system attempts to 

accurately model a scene. In so-doing, it operates like a computer graphics 

program, reconstructing the positions of light sources, surface geometry and 

reflectance (Pizlo, 2001, Poggio et al., 1985). For example, to evaluate the 

reflectance of a sphere, the visual system would infer that the surface is 

spherical, model the scene surrounding the sphere, and use that information 

to dissect the various contributions of lighting and geometry to the retinal 

image. Once these factors are removed, the intrinsic reflectance of the object 

can be established (Fleming, 2014).  

Von Helmholtz was one of the earliest proponents of this theory. He 

proposed that the visual system uses inverse optics to recover albedo (the 

proportion of incident light that is reflected by a surface) (von Helmholtz, 

1962). However, it is now generally agreed that the brain does not perform 

literal inverse optics computations. Based on the information available to the 

visual system, such computations would be intractable (Anderson, 2011, 

Fleming, 2014). Modified inverse optics hypotheses have been developed 

which assume that the brain imposes constraints to reduce ambiguities. For 

example, it may be assumed that a single light source is present or that the 
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reflectance of a surface is uniform. Such assumptions can make inverse 

optics problems tractable for a limited set of viewing conditions and material 

properties (Romeiro and Zickler, 2010).  

An alternative hypothesis proposes that the brain identifies image statistics 

that are diagnostic of material properties, but which remain reasonably 

invariant across different viewing conditions (Fleming and Bülthoff, 2005, 

Motoyoshi et al., 2007, Nishida and Shinya, 1998). In the natural world, 

viewing conditions are not completely arbitrary, so retinal images of materials 

might demonstrate statistical regularities. Detecting these signature 

appearances could  allow the visual system to identify material properties 

without having to accurately model the entire scene (Fleming, 2014). Several 

investigators have provided experimental support for the invariant image 

statistics hypothesis (Motoyoshi et al., 2007, Fleming et al., 2003). For 

example, in a study of perceptions of gloss and albedo, Motoyoshi et al. 

concluded that human observers use the skew of the luminance histogram 

as the basis for their judgements (Motoyoshi et al., 2007). This was true 

whether the degree of skew was naturally occurring or introduced via digital 

manipulation. 

Invariant image statistics have the advantage of being able to cope with 

arbitrary material properties, as long as they exhibit distinctive image 

features. A disadvantage of this model is that the visual system may be 

fooled when the assumed statistics of the natural world are infringed. For 

example, Fleming et al. found that human gloss constancy was good under 

naturalistic illuminations, but performance decreased significantly when using 

artificial sources of illumination (Fleming et al., 2003). The authors suggest 
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that the visual system relies on specular reflection signatures which, when 

infringed, cause gloss constancy to fail. However, like failures in luminance 

constancy (Kingdom, 2011), these failures may be rare under natural 

conditions.  

A third hypothesis has emerged from gloss perception studies using 

conglomerate materials with different reliefs (Ho et al., 2008). Surfaces of 

identical reflectance are perceived as more glossy when they have shallow 

relief and frontal illumination. This observation does not appear to fit with a 

model where physical properties are being estimated by the visual system; 

why should relief affect gloss perception? In a follow-up study, Marlow et al. 

proposed that subjects predict surface gloss based on the "relative salience" 

of highlights (highlight size, contrast, etc.) (Marlow et al., 2012). This led 

Fleming to propose that the brain performs material perception by identifying 

statistical regularities that are predictive of material properties (Fleming, 

2014). In the case of gloss constancy, subjects use the characteristics of 

reflections, such as highlights, to estimate reflectance. Thus, the goal of 

material perception may be to "…identify and measure statistically 

informative appearance attributes…", and not to estimate intrinsic physical 

properties; Fleming refers to these as statistical appearance models 

(Fleming, 2014).  

An advantage of statistical appearance models is that they are much easier 

to compute and can be readily adapted to unfamiliar materials. This 

hypothesis may also explain phenomena that do not appear to fit with other 

models of material perception, such as the association between relief and 

gloss perception (Ho et al., 2008, Marlow et al., 2012, Fleming et al., 2011). 
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5.2.1.2 Minkowski Functionals and “Bones” 

Minkowski functionals (MFs) are combinations of 1st to 4th order correlations 

computed for 2x2 pixel blocks of a binary texture. For 2D binary textures, the 

functionals are referred to as the area, perimeter and Euler number. 

Informally, area refers to the total area of the holes in the texture; perimeter 

refers to the total distance surrounding the holes; and the Euler number 

indicates the degree of connectedness within the texture, and can be thought 

of as a measure of porosity (Michielsen and De Raedt, 2001). On a square 

lattice of pixels, the Euler number can be based on 4- or 8-way 

connectedness (χ4 and χ8) (Michielsen and De Raedt, 2001). 

As discussed in Chapter 2, the relationship between isotrigon texture 

discrimination performance and MFs has been investigated by Barbosa et al. 

(Barbosa, 2013). They considered whether linear combinations of MFs could 

model human performance functions for 33 types of binary isotrigon texture. 

The regression model with the lowest deviance contained combinations of 

some of the mean, variance, kurtosis and skew of χ4 and χ8 ( Barbosa, 

2013). This provided a more parsimonious account of texture perception than 

some other posited basis functions. 

An interesting feature of the Minkowski functionals is that they can be 

extended to describe two-component 3D materials (Michielsen and De 

Raedt, 2001). Two component materials may either be composed of two 

different materials (like fibreglass), or one material and voids (like sponge). It 

has been shown that the MFs of 3D objects are predictive of mechanical 

properties of such materials (Schroder-Turk et al., 2011, Schroder-Turk, 

2010, Michielsen and De Raedt, 2001). For higher dimensions, there is one 
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more MF than the dimensionality. If MFs can be related to the mechanical 

properties of the materials, then by extension the MFs of the surface texture 

might also provide clues to these mechanical properties (Barbosa, 2013, 

Michielsen and De Raedt, 2001). In this manner, MFs may form a bridge 

between the areas of research discussed above: material perception and the 

perception of surface texture.  

Analogous with the early investigations of image statistics in 2D textures, a 

limiting factor in the investigation of material perception is the availability of 

suitable 3D stimuli with controlled and readily interpretable statistics. In this 

regard, we speculated whether the isotrigon textures described above could 

be extrapolated to 3D models. According to the inverse image statistics 

model (Pizlo, 2001, Poggio et al., 1985), it is conceivable that the brain 

computes MFs from a retinal image of a 3D object. This computation would 

occur on the basis of observation of surface material structure (for example, 

the voids and occlusions visible on the surface of a sponge). Recall that the 

MFs can be computed from local 2x2 blocks of the surface texture 

(Michielsen and De Raedt, 2001), i.e. highly local image properties. Because 

internal structure is not visible, an implicit assumption would be required that 

the material is structurally consistent. Based on inferred MF data, the 

physical properties of a material could then be computed.  

Alternatively, MFs are candidate invariant image statistics (Fleming and 

Bülthoff, 2005, Motoyoshi et al., 2007, Nishida and Shinya, 1998) which 

might be used to infer physical properties of materials. This seems more 

likely, as characteristics defined by MFs would not be affected by changing 

environmental factors. It should be noted that the perception of MFs could be 
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affected by environmental factors however. For example, in the case of 

surface roughness, one study found that subject evaluations were biased by 

angle of illumination (Ho et al., 2006). It is therefore feasible that evaluations 

of different angles of illumination could enhance or detract from the 

appearance of holes, making them appear more or less deep. This has not 

been evaluated experimentally, although other studies of the perception of 

surface roughness may be relevant (Padilla et al., 2008, Pont and 

Koenderink, 2008).  

Lastly, it could be that MFs are indirectly related to material perception, in 

accordance with the statistical appearance model (Fleming, 2014). i.e.: MFs 

describe the inherent properties of a material; the inherent properties of a 

material dictate its statistical appearance model; the brain uses the statistical 

appearance model to infer material properties. In this is the case, we might 

expect relative judgements of material properties to be reasonably consistent 

between different observers, but the veracity of those judgements in absolute 

terms to be poor. This might would indicate that direct computation of 

material properties is not occurring, rather an inference is being made based 

on statistical appearance (Fleming, 2014).  

 

5.2.1.3 Study Design and Implementation 

One way to test hypotheses of material perception is to develop novel 3D 

stimuli with defined, predicted MFs and calculable physical properties. These 

3D stimuli could be displayed to subjects under consistent lighting conditions. 

Subjects would then be asked to rate the stimulus in terms of a physical 
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metric, such as compressive of tensile strength. The material perception data 

of the subjects would then be analysed in the context of known MF data and 

predicted physical properties. 

The first step in producing 3D isotrigon texture-derived structures, which 

have been colloquially termed "Bones", was to decide how to produce the 

structures. Binary and ternary isotrigon textures are produced using 

deterministic and stochastic processes (Victor and Conte, 2012, Maddess et 

al., 2007, Maddess and Nagai, 2001). In the binary isotrigon case, these 

methods produce a 2D matrix of 1s and -1s representing black and white 

pixels. One way to produce 3D matrices is to combine two binary isotrigon 

2D matrices by taking their outer products. i.e.: we take the n outer products 

of the two binary isotrigon matrices, where n is the length of the Bone (in this 

case 32). Before taking the outer products, the matrix is converted to 1s and 

0s. This produces a 3D matrix of size 32 along each axis. This process is 

illustrated in Figure 1 below. To accommodate a wide variety of physical 

properties, it was decided that the Bones should be made with dimensions 

32x32x96. This was achieved by combining 3 copies of the same 3D bone 

matrix, end to end.  
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Figure 1. Generating the 3D Bone matrix by taking a series of outer 

products. t1 and t2 represent two binary isotrigon textures. Each of 

these textures is composed of a 2D matrix of 1s and 0s (of size 

32x32). To form the first slice of the Bone matrix, the outer product is 

taken between row x and column a (highlighted in blue in the Figure). 

The resulting slice is a 32x32 matrix, in which each 1 represents a 

1x1x1 cube and each 0 a 1x1x1 void. The next slice is formed by 

taking the outer product of row y and column b (pink), and so on. The 

series of outer products results in the formation of 32, 32 x32x1 slices, 
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and therefore a 32x32x32 cube. Three such cubes are stacked to 

form one Bone (of size 32x32x96).  

Bones were systematically produced from 14 types of binary isotrigon 

texture, each of which had Even and Odd variants: Bar, Box, Corners, Cross, 

Diag, El, Foot, Oblong, Rod, Tee, Triangle, Wolf, Wye, Zigzag. The product 

of glider a and b is compositionally the same as the product of b and a, 

except the 3D matrix produced is a 90 degree rotation. Therefore, the 

number of possible combinations of 2 texture types chosen from the 28 

texture types, where order is not important and repetition is not allowed, is 

378. To indicate the taking of the outer products of two binary isotrigon 

matrices, we use the nomenclature "ab", where a and b are texture types.  

One interesting consequence of the outer product process is that the 

resulting Bone matrices always have 2 ends which are BoxEven. Examples 

of Bones produced in this manner are shown below in Figure 2.  

The next step was to select a subset of the possible Bones which had 

reasonably distinct MFs. For each Bone type, there is some variation in MFs 

between examples (Figure 3).  
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A

 

B

 

C

 

Figure 2. Bones from three families. A: BoxEvenTriangleEven. B: 

BoxOddCrossOdd. C: TriangleOddBoxEven.  

 

Figure 3. Plot of Euler number versus example number for 5,000 

examples of the TeeOddCrossEven Bone. Note the variation in the 

magnitude of the Euler number, from -2,749 to -1,243. 
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In light of this sample variation, the MF data for 5,000 examples of each 

Bone type were plotted (Figures 4 and 5). 

  

Figure 4. MFs (Euler number and Surface) for 5,000 examples of 

Bones from 16 Bone families.   

 

  

Figure 5. MFs (Volume and Curvature) for 5,000 examples of Bones 

from 16 Bone families.   
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Based on this analysis, the 11 Bone families with the most distinct MFs were 

selected to test. The Euler numbers for these Bone families are plotted below 

in Figure 6, based on 10 examples of each Bone. 

 

Figure 6. Selected Bone families, based on Euler number. The 11 

most distinct Bone families were selected, based on Euler numbers 

for 5,000 examples.    

In total, 11 Bone families were selected for maximum variability in MFs. Ten 

examples of each Bone was produced. In addition to the 3D surface models 

produced in Matlab, static images were produced for priming stimuli, and 

STL files were produced for use with COMSOL Multiphysics software 
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(COMSOL, 2014). COMSOL Multiphysics can be used to calculate the 

predicted material properties of an STL model. 

For the purposes of a pilot study, a Matlab graphical user interface (GUI) was 

developed and implemented, which allowed Bone examples of be displayed 

in a random order and subject material perception judgements recorded 

(Figure 7). Within the GUI, the Bones are rendered as simple "surf" objects in 

consistent light fields. The Bone examples rotate around the Y axis to show 

the different faces.  

 

Figure 7. Matlab GUI for presenting Bone examples and recording 

material perception judgements. Bones are presented in a random 

order. On presentation, the Bones rotate around the Y axis, to display 

the distinct faces. 

In the first instance, one subject (JWGS) completed 1,320 replications for the 

four metrics discussed above. 
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5.2.1.4 Possible Study Extensions 

Based on the results of the pilot study, a number of study extensions might 

be considered.  

Matlab provides basic support for rendering and lighting 3D objects, but it is 

not its primary purpose. Because we are asking subjects to make material 

perception judgements about the stimuli, it is important that they look 

realistic. Therefore, the use of sophisticated 3D modelling software may be 

warranted, such as the open source 3D graphics and animation program 

Blender. Blender can produce photo-realistic object models with complex 

light fields and a variety of different surface properties. According to our 

hypothesis, material perceptual judgements should be unaffected by 

cosmetic changes to the surface and this could also be explored. Some 

examples of Blender objects, using a variety of different surface materials, 

are shown in Figure 8.  

A related study extension might be to 3D print Bone examples using the STL 

files already produced. This is relatively cheap and there are many 

commercial outfits which offer small scale 3D printing in a variety of 

materials. The 3D printed Bone examples might fulfil two purposes. Firstly, 

they could be used to prime subjects before testing. Subjects could view 

them before performing the material perception task, to help them bridge the 

conceptual gap between the visual presentation of simulated materials and 

the perception of "real materials". Secondly, the physical properties of the 3D 

printed examples could be destructively tested, using methods such as 

uniaxial tensile testing; this would enable us to evaluate the veracity of 

COMSOL predictions.  
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Figure 8. Examples of simulated materials and light fields for various 

different materials, rendered in Blender. Adapted from examples by Martinez 

(Martinez, 2015). 

 

5.2.2 Isotrigon Discrimination in Clinical Diagnostics  

If the texture discrimination performance functions described in Chapters 2-4 

are representative of normal (healthy) subjects, deviations from the norm 
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may have clinical significance; such deviations could be measured in terms 

of maximally informative directions, or reduced learning for a texture subset 

(such as the ternary betas). There is a clinical rationale for this, as follows.  

Several studies have attempted to identify which brain regions are involved 

in texture discrimination; there is some overlap between these regions and 

those affected by various neurological diseases. Beason-Held et al. used 

fMRI to measure responses to random textures and BoxEven binary 

isotrigon textures (Beason-Held et al., 1998a, Victor, 1985). The viewing of 

random textures increased activity in the striate cortex, with slight 

involvement of the cuneus and middle occipital, lingual and fusiform gyri. The 

viewing of BoxEven binary isotrigon textures resulted in activation of the 

same areas, but to a greater extent. In addition, activation was observed in 

the middle temporal region. Based on these findings, the authors suggest the 

presence of receptive field mechanisms in the ventral visual pathway that are 

sensitive to higher-order spatial correlations (Beason-Held et al., 1998a). 

Indeed, a subsequent fMRI study by the same authors identified a linear 

relationship between activation in the striate cortex and the density of higher-

order spatial correlations in the textures presented (Beason-Held et al., 

2000).  

In another study by Beason-Held et al. (Beason-Held et al., 1998b) PET was 

used to evaluate regional cerebral blood flow (rCBF) in subjects viewing two 

random BoxEven binary isotrigon textures (as used in (Beason-Held et al., 

1998a) and (Beason-Held et al., 2000)). The viewing of these textures 

resulted in increased rCBF along the occipito-temporal pathway, versus the 

viewing of random noise patterns. Significant activation was identified in 
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"…striate, extrastriate, lingual, and fusiform cortices as well as the 

hippocampus and brain stem" (Beason-Held et al., 1998b). Notably, 

increases in rCBF migrated from the occipito-temporal to the medial temporal 

areas (hippocampus) and frontal lobes following increased exposure to the 

isotrigon stimuli. This suggests the recruitment of higher-order brain areas 

during learning (Beason-Held et al., 1998b). 

There is evidence that texture discrimination is negatively affected in multiple 

sclerosis (MS) patients, whilst other visual functions are spared (Regan and 

Simpson, 1995, Regan and Hong, 1994). Regan et al. found that MS 

produced a selective failure in the ability to identify texture-defined stimuli, 

whilst these patients retained the ability to identify comparable stimuli defined 

by luminance and motion (Regan and Simpson, 1995). The authors suggest 

that the decline in texture segregation ability may result from demyelination 

of long-range connections between orientation-tuned neurons in the striate 

cortex.  

A pattern of higher-order vision impairment has also been observed in 

Alzheimer's disease (AD) patients (Rizzo et al., 2000). Rizzo et al. found that 

AD individuals performed significantly worse on tests of "…static spatial 

contrast sensitivity, visual attention, shape-from-motion, colour, visuospatial 

construction and visual memory" (Rizzo et al., 2000). Differences between 

AD and healthy subjects were not observed based on static visual acuity, 

stereoscopic acuity, dynamic visual acuity or motion direction discrimination. 

The results of the visual tests were found to be correlated with measures of 

cognitive functioning (Rizzo et al., 2000). The brain regions affected during 

AD vary considerably, but typically include higher-order association visual 
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areas such as the IT cortex and the hippocampus (Hof et al., 1997, von 

Gunten et al., 2006). These areas may be involved in learning higher-order 

texture discrimination (Beason-Held et al., 2000).  

 

5.2.3 Illusions of 3D Shape 

An interesting property of some ternary textures is the presence of cues 

which can confer the impression of 3D shapes. Maddess et al. previously 

reported this phenomenon for textures which had been produced by a variant 

of the deterministic cellular automata method (Maddess et al., 2004). Such 

illusions may be generated by false lighting cues, whereby the presence of 

grey is interpreted by the brain as shading, or false depth cues, whereby 

texture is interpreted as surface distortion (Maddess et al., 2004, Gibson, 

1950). Some examples of these are shown in Figure 9.  

In genuine 3D scenes, stereopsis and motion parallax provide important 

visual cues (Todd, 2004, Anzai and DeAngelis, 2010). However, in the 

absence of 3D information, humans are able to use other cues to form 3D 

percepts (Cavanagh and Leclerc, 1989, Todd, 2004, Georgieva et al., 2008). 

Numerous studies have investigated the perception of 3D shape from texture 

(Blake et al., 1993, Todd et al., 2004, Knill, 1998). Blake et al. describe the 

development of a statistical model for estimating shape from texture with an 

ideal observer (Blake et al., 1993). Knill et al. investigated the relative 

importance of perspective scaling, foreshortening and density for 

discriminating surface orientation (Knill, 1998). Using an ideal observer 

model, they found texture foreshortening to be the primary cue for perceiving 
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surface slant (Knill, 1998). In another study by Todd et al. (Todd et al., 2004) 

observers judged the surface depth profiles of randomly shaped textured 

objects. Observers consistently underestimated the depth of surface relief, 

but their evaluations of the overall shapes of surfaces were strongly 

correlated with the ground truth (Todd et al., 2004). 

Perception of shape from image shading is affected, not only by surface 

geometry, but also reflectance and overall illumination (Koenderink). Perhaps 

unsurprisingly, perception of shape from shading is less tightly coupled to the 

ground truth than for other cues (Todd et al., 2004). Shading is particularly 

important for the analysis of curved surfaces according to Todd (Todd, 

2004). Illusory shape from shading may result from an analogous process to 

that proposed by Purves et al. with regard lightness illusions (Purves et al., 

2001, Purves and Lotto, 2011). When confronted with a shaded image, in the 

absence of other cues, the brain makes a probabilistic judgement based on 

prior experience and learned associations (Purves et al., 2001, Purves and 

Lotto, 2011). What neurological mechanisms are involved in the processing 

of 3D shape from shading and texture?  
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Figure 9. Examples of textures which show illusory depth effects of 

varying strengths. These textures have been created by a 

deterministic cellular automata method, but with more complex rules 

for combining the 3 input pixels, to form the 4th pixel in the recursion. 

The gliders and names are indicated on the y axis, and the example 

number on the x axis. Particularly strong depth effects have been 
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observed for the following examples: Box 1; El 2, 4, 5; Wolfram 1, 2, 

6; Zigzag 1 (Maddess et al., 2004). 

 

Early evidence came from lesional studies in macaques (Dean, 1976, 

Ungerleider and Mishkin). Bilateral lesions to the inferior temporal cortex 

impaired the macaques' ability to discriminate complex 2D patterns or 

shapes. Animals with lesions in the parietal cortex exhibited normal shape 

discrimination, but impaired ability to locate objects in space, thus suggesting 

distinct dorsal and ventral pathways (Todd, 2004). However, other fMRI 

studies in humans suggest that the perception of 3D shape involves both the 

dorsal and ventral pathways (Shikata et al., 2001, Murray et al., 2003, Taira 

et al., 2001). Judgments of 3D shape produces activation in ventral cortical 

regions, although interestingly these regions only partially overlap with those 

observed during viewing of 2D shapes (Kourtzi and Kanwisher, 2000).The 

analysis of 3D shape occurs at numerous locations within the dorsal pathway 

(Todd, 2004). 

There has been relatively little research into the neurological mechanisms by 

which 3D shape is determined from texture and shading (Georgieva et al., 

2008, Arcizet et al., 2009). One notable fMRI study by Georgieva et al. used 

shading or texture cues, whilst being careful to eliminate confounding cues 

such as edges and vertices (Georgieva et al., 2008). They found that the 

extraction of 3D shape from texture involves the bilateral caudal inferior 

temporal gyrus (caudal ITG), lateral occipital sulcus (LOS) and several sites 

along the intraparietal sulcus. It is notable that similar areas are involved in 

the processing of motion parallax and stereopsis cues (Todd, 2004). 
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However, the analysis of 3D shape from shading was restricted to the caudal 

ITG (Georgieva et al., 2008). Other fMRI studies on humans indicate a 

participation of both dorsal and ventral pathways (Taira et al., 2001).  

Single-unit studies indicate that V4 neurons play an important role in shape 

from shading (Hanazawa and Komatsu, 2001, Pasupathy, 2006, Arcizet et 

al., 2009). A study by Pasupathy et al. found that contour features may be 

the basis of shape representation in the macaque V4 (Pasupathy, 2006). 

Single unit responses to V4 neurons were strongly tuned for such features; 

furthermore, responses to complex shapes were dictated by curvature at 

specific boundary locations (Pasupathy, 2006). Arcizet et al. found that V4 

participated in the perception of complex shape from shading patterns in 

awake macaques (Arcizet et al., 2009). Interestingly, 78% of V4 neurons 

responded differently to 3D and 2D versions of the same stimuli (Arcizet et 

al., 2009). Caution should be used when extrapolating macaque studies to 

humans however, as there is some evidence of differences in 3D shape 

perception between the two models (Vanduffel et al., 2002).  

An interesting question is whether the illusions of 3D shape described in 

complex textures contribute to discrimination performance and this remains 

to be investigated. The contribution of the grey token to 3D perception would 

also be interesting to explore; it may be that grey is essential to illusions of 

3D shape as it provides the illusion of shading. Again, mTurk could be used 

to survey a large cohort of Workers for the emergence of perceived 3D 

shape from ternary textures. Once the most "3D-inducing" textures have 

been identified, it would also be interesting to explore the (presumably 

destructive) effects of decorrelation.  
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5.2.4 Probing Convolutional Neural Networks 

The testing modality used in the HITs of Chapters 3 and 4 may have wider 

applications; for example, it might be used in the analysis of convolutional 

neural networks (CNN) (LeCun et al., 1998). CNNs are powerful universal 

function approximators which have found important applications in image 

classification (Krizhevsky et al., 2012), digit recognition (Ciresan et al., 2010), 

facial recognition (Lawrence et al., 1997), and video analysis (Simonyan and 

Zisserman, 2014). Their dependence on different image statistics is not 

understood, but will presumably vary depending on the specific classification 

task being undertaken. A particularly interesting classification task uses the 

ImageNet data set.  

The ImageNet data set is a standard image library used to benchmark image 

classifiers (ImageNet, 2012). The data set consists of 150,000 natural 

images, hand labelled for the presence or absence of 1,000 object 

categories. Classification performance on the ImageNet data set has 

become something of an arms race, with the current classification record 

broken by a Microsoft Research CNN (4.94% error) (He et al., 2015), Google 

(4.80% error) (Ioffe and Szegedy, 2015), and most recently Baidu with 4.58% 

error rate (Wu et al., 2015), although they were subsequently found to have 

exceeded their weekly submissions. Human-level classification on this data 

set is estimated at 5.1% error rate (Russakovsky et al., 2014). Other highly 

effective ImageNet CNNs are available as open source software.  

What image statistics these trained ImageNet CNNs utilise to make their 

classification decisions remains an open question. Zeiler et al. recently 
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investigated which gross image areas are important to the classifier. To do 

this, they plotted the probability of the class of interest as a function of the 

position of an occluding image mask (Zeiler and Fergus, 2014). The 

probability was then displayed as a colourmap and overlayed on the original 

image. 

In another recent study using an ImageNet CNN, Long et al. explored how 

much spatial information is preserved by CNNs (Long et al., 2014). They 

found evidence that CNNs retain precise spatial information about object 

correspondences within images. Image features were found to localize at a 

much finer scale than the CNN receptive field sizes (Long et al., 2014). A 

study by Mahendran et al. is particularly pertinent (Mahendran and Vedaldi, 

2014). They attempted to use the information in the deep layers of an 

ImageNet trained CNN by inverting it. Several layers in the CNN were found 

to retain photographically accurate image information, with different degrees 

of geometric invariance (Mahendran and Vedaldi, 2014). 

We suggest that stochastic ternary textures could be used to directly explore 

which image statistics are important to trained ImageNet CNNs. After training 

an ImageNet CNN, the network would then be adapted to classify band 

positions within stochastic ternary textures. This process of adapting a pre-

trained CNN is known as "transfer learning" and involves replacing the output 

layer of the network (Oquab et al., 2014). In this manner, the pre-trained 

CNN effectively operates as a fixed feature extractor. The modified CNN 

could then be subjected to the study protocol described in Chapters 3 and 4; 

in this case, the modified CNN would have near-human ImageNet 

classification performance, but be naïve to stochastic ternary textures.  
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If the trained ImageNet CNN is sensitive to similar directions within the 

texture space it would be a significant finding. If this is not the case, then the 

similarities and differences between the two would still be interesting to 

analyse, particularly considering the fact that their ImageNet classification 

performance is near equivalent. This approach might also indicate areas 

where performance can be improved. There is evidence that post-training 

inculcation of textural information may improve classification performance. 

For example, Dieleman recently reported using Haralick texture features 

(Haralick, 1979) to improve the performance of a CNN using a technique 

which he called "late fusion" (Dieleman, 2015). 

 

5.3 Conclusion 

The study of texture is a rich and challenging field. By studying textures and 

how they are perceived, we open up many leads into visual processing. 

Using artificially generated textures, with carefully controlled statistical 

properties, we can probe the sensitivities and limitations of the human visual 

system to higher-order correlations. Such studies may in turn inform us about 

the functioning of the cortex. Crowdsourcing platforms have great potential 

for implementing such experiments; the scale and efficiency savings they 

offer cannot be matched in traditional laboratory settings.  

By identifying normative functioning in healthy individuals, tests of texture 

discrimination may be applied to clinical problems. Based on spatially 

localised patterns of neurodegeneration, and clinical symptoms, deficits in 

texture perception is a promising candidate for a diagnostic tool. We have 
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also considered how an extrapolation of 2D textures into the 3D space may 

inform theories of material perception. Lastly, the study of textural image 

statistics may have ramifications for image categorisation problems using 

CNNs. The testing modality outlined here may be applied to trained 

networks, which are functionally "black boxes", in order to elucidate their 

mode of action. 
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Chapter 6: Appendix 

6.1 Binary Isotrigon HIT Page Screen Capture 

The following figure shows a screen capture of the binary isotrigon texture 

discrimination HIT used in Chapter 3. The HIT proper is one continuous 

webpage, but here it has been split to fit the page. 
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Figure A.1: Screen capture of the binary isotrigon texture 

discrimination HIT that was used on Amazon Mechanical Turk 

(mTurk). The HIT page proper was one continuous webpage; the 

page has been split.   

 

6.2 Lab Phase Platform Summary Table 

Six different platforms (M1 to M6) were chosen on which to test the binary 

isotrigon texture discrimination HIT in the Lab experiments. Monitor 

luminance and other physical characteristics of the platforms were measured 

and recorded in the following table (Fig.A.2).  

 

Figure A.2: Summary table for the six different platforms chosen for 

Lab testing using the binary isotrigon texture discrimination HIT. 

Rep0-2 indicates the repetition number and corresponding dates (day, 

month format, for the year 2013). The pixel resolution is given in 
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horizontal by vertical format. Thus, “768x1024” indicates a display in 

portrait format.  

6.3 Bland-Altman Plots 

Bland-Altman plots were produced for the Live and Lab data sets (Fig. A.3) 

(Bland, 2000, Bland and Altman, 1999, Bland and Altman, 1986, Vaz et al., 

2013). The coefficient of repeatability for the DC versus the Live1 data was 

14.3% and M1-M6 versus Live1 was 15.6%. These scores are quite low and 

they suggest that the live mTurk study has accurately reproduced the texture 

discrimination results that were produced by supervised laboratory trials. The 

coefficient of repeatability for the DC versus the Live2 data was 16.2% and 

test M1-M6 versus Live2 was 16.0%. These scores are slightly higher, but 

once again they are low, again indicating that the live mTurk study has 

accurately reproduced the supervised laboratory trials.  

The CR between Live1 and Live2 was only 9.4% and this very low score 

indicates that the live study itself has a good repeatability. For completeness, 

the coefficient of repeatability between DC versus M1-M6 data was 17.2%.  
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Figure A.3: M1-M6 vs Live1 is shown in A. DC vs Live1 is shown in B. 

Live1 vs Live2 is shown in C. M1-M6 vs Live2 is shown in D. DC vs 

Live2 is shown in E. 
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6.4 Factor Scores for the Machine Data Set (M1-M6) 

 

 

 

Figure A.4: Plot of factor scores against machine type for the M1-M6 

data set. The effect of the top four factors is reasonably consistent 

across the 6 machines and 3 repeats on each evaluated. This 

suggests that variations between machines (such as monitor size, 

resolution, browser, etc) do not significantly alter the effect of the 

underlying factors, as we would expect. The relative strength of the 

four factors can also be inferred from this graph. 
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6.5 Effect of Physical Screen Size on Performance 

 

 

Figure A.5: Effect of physical screen size on performance. The Live 

performance data was stratified into four groups based on diagonal 

screen size: 10-13 in, 14-16 in, 17-19 in, and 20-22 in. This was 

calculated from DPI and screen resolution data, which was captured 

from the Live HITs. A: Colourmap showing median texture 

discrimination performance (probability correct) by physical screen 

size. B: Colourmap of correlations between median texture 

discrimination performance for each of four screen size groups. 

 

The physical screen sizes (diagonal resolution in pixels) were calculated 

using the Pythagorean Theorem as follows: 
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dp = √wp
2 + hp

2 

PPI = dp / di 

 

…where: dp is diagonal resolution in pixels; wp is width resolution in pixels; 

hp is height resolution in pixels; di is diagonal screen size in inches.  

 

6.6 Comparison of Deterministic and Stochastic Ternary Textures 

using Histograms of Primitives 

In the deterministic process for producing ternary textures, outlined by 

Maddess et al. (Maddess et al., 2007), each texture ensemble is generated 

by a cellular automata method combining a 3x3 pixel glider defining three 

input pixels (grey) and an output pixel (white) and 24 recursively applied 

arithmetic rules. This produces 3V3L ternary textures, with three input 

variables ("3V") and three levels ("3L"). In combination with 20 commonly 

used glider patterns, this process generates 216 texture classes (Maddess et 

al., 2007). 

The recursive process itself is similar to that discussed for binary textures 

(Maddess and Nagai, 2001). The gliders and rules together specify how the 

values of each input pixel are combined to give the value for the output pixel. 

Each nascent texture is initialized with ternary noise. The glider is then 

moved across the matrix recursively, interacting with matrix elements 

according to the stated rules. Therefore, newly instantiated pixel values may 
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in turn feed back into the process (be selected as input pixels) as the glider 

moves across the nascent texture (Maddess et al., 2004, Maddess et al., 

2007, Taylor et al., 2008). As with the binary isotrigon textures, the process 

is deterministic because the set of initial conditions (random boundary pixels) 

defines the textures obtained (Maddess et al., 2004, Maddess et al., 2007) 

(Figure A.6.1). 

 

Figure A.6.1: Deterministic ternary texture examples from 21 

ensembles (Taylor et al., 2008). Textures within each ensemble are 

generated via a set of arithmetic rules. The gliders are shown in the 

leftmost column. The grey squares indicate input pixels and the white 

square, the output pixel. The ternary texture is formed as the glider 

moves recursively across the surface of a ternary noise pattern. When 

the glider interacts with a randomly assigned pixel in the ternary noise 
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pattern, the value of that pixel may be changed. The result of the 

interaction depends on the value of the target pixel, the structure of 

the glider, and one of a set of rules. These rules are labelled on the X 

axis (M0, M1, I0, I1, and I2) and they insure the higher order 

properties of the ternary textures (Maddess et al., 2007).  

We have discussed the stochastic and deterministic methods of ternary 

texture production (Chapter 4, Section 4.3.3 and Chapter 1, Section 1.5.2), 

but what is the relationship between these texture ensembles? Examination 

of the 12 types of stochastic ternary textures produced by constraining 

triplets of pixels (thetas) revealed that they were superficially similar to some 

V3L3 deterministic textures previously reported by Maddess et al. (Maddess 

et al., 2007). 

To check that they were identical, their histograms of primitives (HOPs) were 

examined (Maddess, 2015) (Figure A.6.2). HOPs count the number of small, 

unique texture samples (primitives, typically 3x3 pixel samples) within a 

texture example and thereby uniquely identifies a texture type (Maddess et 

al., 2007).  The stochastic ternary textures produced by our collaborator Prof. 

Jonathan Victor of the Weill Cornel Medical School (Victor and Conte, 2012) 

were found to be equal to the deterministic textures reported by Maddess in 

the 2007 study, which were made using the deterministic method, taking 

rotational and reflectional invariance into consideration (Maddess, 2015). 
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Figure A.6.2: Example of a Histogram of Primitives (HOPs). In this 

figure, an example of the ternary texture type being analysed is shown 

in A. The histogram of primitives for the texture is shown in D. The 

primitives are the 3x3 pixel "mini-textures" within the texture example 

shown in A. Each peak in the histogram identifies a single mini-texture 

type. Every ternary texture is defined by a specific pattern of mini-

textures. Thereby, deterministic and stochastic V3L3 textures can be 

directly compared by comparing their HOPs. Some textures may 

appear to be visually similar, whilst their mini-texture content is distinct 
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and unique. Discounting rotations and reflections, the stochastic and 

deterministic textures were found to be equivalent (Maddess, 2015). 

Figure adapted from (Maddess et al., 2007). 

 

6.7 Ternary HIT Page Screen Capture 

The following figure shows a screen capture of the ternary texture 

discrimination HIT used in Chapter 4. The HIT proper is one continuous 

webpage, but has been split here to fit the page. 
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Figure A.7: Screen capture of the ternary texture discrimination HIT that was 

used on Amazon Mechanical Turk (mTurk) in Chapter 4. The HIT page 

proper was one continuous webpage; the HIT page shown here has been 

split.   
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6.8 Live1 Performance Data 

All Live1 performance data was analysed after filtering the data by catch trial 

passes. i.e.: data from Workers that failed >= 4 catch trials was excluded. In 

the first instance, boxplots were produced for each ternary texture type 

(using the long condition only).  

The three plots refer to the combined (top), long (middle) and short (bottom) 

presentation times. The dashed red lines divide the plots into the 6 rays with 

the following colour-biases: B (Black); BG (Black-grey); G (Grey); GW (Grey-

white); W (White); WB (White-black). The step and ray values are indicated 

on the X axis, using the Victor nomenclature discussed in Chapter 4, Section 

4.3.3. 
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Figure A.8.1: Performance data for gamma_A1 ternary textures in Live1. 
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Figure A.8.2: Performance data for beta_hv_AB11 ternary textures in 

Live1. 
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Figure A.8.3: Performance data for beta_hv_AB12 ternary textures in Live1. 
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Figure A.8.4: Performance data for beta_diag_AD11 ternary textures in 

Live1. 
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Figure A.8.5: Performance data for beta_diag_AD12 ternary textures in 

Live1. 
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Figure A.8.6: Performance data for theta_BCD111 ternary textures in Live1. 
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Figure A.8.7: Performance data for theta_BCD112 ternary textures in Live1. 
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Figure A.8.8: Performance data for theta_BCD121 ternary textures in 

Live1. 
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Figure A.8.9: Performance data for theta_BCD122 ternary textures in Live1. 
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Figure A.8.10: Performance data for alpha_ABCD1111 ternary textures in 

Live1. 
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Figure A.8.11: Performance data for alpha_ABCD1112 ternary textures in 

Live1. 
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Figure A.8.12: Performance data for alpha_ABCD1122 ternary textures in 

Live1. 
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Figure A.8.13: Performance data for alpha_ABCD1221 ternary textures in 

Live1. 
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6.9 Live2 Performance Data 

All Live2 performance data was analysed after filtering the data by catch trial 

passes. i.e.: data from Workers that failed >= 4 catch trials was excluded. In 

the first instance, boxplots were produced for each ternary texture type 

(using the long condition only).  

The three plots refer to the combined (top), long (middle) and short (bottom) 

presentation times. The dashed red lines divide the plots into the 6 rays with 

the following colour-biases: B (Black); BG (Black-grey); G (Grey); GW (Grey-

white); W (White); WB (White-black). The step and ray values are indicated 

on the X axis, using the Victor nomenclature discussed in Chapter 4, Section 

4.3.3. 
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Figure A.9.1: Performance data for gamma_A1 ternary textures in Live2. 
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Figure A.9.2: Performance data for beta_hv_AB11 ternary textures in 

Live2. 
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Figure A.9.3: Performance data for beta_hv_AB12 ternary textures in 

Live2. 
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Figure A.9.4: Performance data for beta_diag_AD11 ternary textures in 

Live2. 
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Figure A.9.5: Performance data for beta_diag_AD12 ternary textures in 

Live2. 
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Figure A.9.6: Performance data for theta_BCD111 ternary textures in 

Live2. 
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Figure A.9.7: Performance data for theta_BCD112 ternary textures in Live2. 
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Figure A.9.8: Performance data for theta_BCD121 ternary textures in 

Live2. 
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Figure A.9.9: Performance data for theta_BCD122 ternary textures in 

Live2. 
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Figure A.9.10: Performance data for alpha_ABCD1111 ternary textures in 

Live2. 
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Figure A.9.11: Performance data for alpha_ABCD1112 ternary textures in 

Live2. 
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Figure A.9.12: Performance data for alpha_ABCD1122 ternary textures in 

Live2. 
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Figure A.9.13: Performance data for alpha_ABCD1221 ternary textures in 

Live2. 
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